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Abstract

Fix a bounded planar domain Ω. If an operator T, in the Cowen-Douglas class B1(Ω), admits

the compact set Ω as a spectral set, then the curvature inequality KT (w) ≤ −4π2SΩ(w, w)2,

where SΩ is the Sz̈ego kernel of the domainΩ, is evident. In particular, for any contraction T in

B1(D), KT (w) ≤−4π2SD(w, w)2 =−(1−|w |2)−2. The curvature of the unilateral backward shift

operator U∗+ equals (1−|w |2)−2, w ∈D. However, it is easy to construct examples of contractive

operators T in B1(D) for which KT (w0) = (1−|w0|2)−2 for some w0 ∈ D but T is not unitarily

equivalent to U∗+.

After imposing some “mild" conditions on the class of co-subnormal contractions T in

B1(D), it is shown that if KT (w0) =−(1−|w0|2)−2 for an arbitrary but fixed point w0 ∈D, then

T is unitarily equivalent to U∗+.

Except when Ω is simply connected, the existence of an operator for which KT (w) =
−4π2SΩ(w, w)2 for all w in Ω is not known. However, one knows that if w is a fixed but arbi-

trary point inΩ, then there exists a bundle shift of rank 1, say S, depending on this w, such that

KS∗(w) =−4π2SΩ(w, w)2. It is proved that these extremal operators are uniquely determined:

If T1 and T2 are two operators in B1(Ω) each of which is the adjoint of a rank 1 bundle shift

and KT1 (w) = −4π2SΩ(w, w)2 = KT2 (w) for some fixed w in Ω, then T1 and T2 are unitarily

equivalent. A surprising consequence is that the adjoint of only some of the bundle shifts of

rank 1 occur as extremal operators in domains of connectivity ≥ 1. These are then described

explicitly.

For a tuple of commuting operator TTT = (T1, . . . ,Tm) in Bn(Ω), where Ω is a bounded

domain in Cm , a curvature inequality is found.

The module tensor product of a Hilbert module H a two dimensional Hilbert module

over the function algebra O (Ω) given explicitly. In the case of planar domain Ω, using the

module tensor product, the dilation for every two dimensional contractive module over O (Ω)

is described. The question of explicitly describing the dilations for two dimensional modules

over the algebra O (Ω), for any domainΩ⊂Cm is also investigated.
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Chapter 1

Introduction

LetΩ be a bounded, open and connected subset of the complex plane C. Assume that ∂Ω, the

boundary of Ω, consists of n + 1 analytic Jordan curves. Set Ω∗ = {z̄ | z ∈ Ω}, which is again

a planar domain whose boundary consists of n + 1 analytic Jordan curves. Here we study

operators in Bn(Ω∗), first introduced by Cowen and Douglas in the very influential paper [13].

Definition 1.1. An operators T acting on a complex separable Hilbert space H with its spec-

trum σ(T ) contained in Ω∗, is said to be in the class Bn(Ω∗) if it meets the following require-

ments.

1. ran(T −w) =H , w ∈Ω∗,

2.
∨

w∈Ω∗ ker(T −w) =H and

3. dim(ker(T −w)) = n, w ∈Ω∗.

These conditions ensure the existence of a rank n Hermitian holomorphic vector bundle

ET overΩ∗, that is,

ET := {(w, v) ∈Ω∗×H : v ∈ Ker(T −w)},π(w, v) = w,

and there exist a holomorphic frame w 7→ γ(w) := (γ1(w),γ2(w), . . . ,γn(w)) with the property

ker(T−w) = span {γi (w) : 1 ≤ i ≤ n} (cf. [13, Proposition 1.11]). Consequently the function

Θ :Ω∗ 7→ Gr(H ,n), Θ(w) = ker(T −w) is holomorphic, where Gr(H ,n) is the Grassmannian

manifold of n - dimensional subspaces in the Hilbert space H . So the holomorphic Hermitian

bundle ET is the pull-back of the tautological bundle on Gr(H ,n) under Θ. Cowen and Dou-

glas proved that the equivalence class of Hermitian holomorphic bundle ET and the unitary

equivalence class of the operator T determine each other (cf. [13, Theorem 1.14]).



2 1. Introduction

Theorem 1.2 (Cowen-Douglas). Two operators T1 and T2 in Bn(Ω∗) are unitarily equivalent

if and only if the associated Hermitian holomorphic vector bundles ET1 and ET2 are locally

equivalent.

The Hermitian structure of the vector bundle ET at the point w with respect to the frame

γ(w) is obtained from that of the subspace ker(T −w) of the Hilbert space H and we denote

it by h(w) = ((〈γ j (w),γi (w)〉H
))

. The curvature Kγ of the bundle ET w.r.t the frame γ is given

by the following formula (see [43, Proposition 2.2])

Kγ(w) = ∂

∂w̄

(
h−1(w)

∂

∂w
h(w)

)
d w̄ ∧d w

=Kγ(w)d w ∧d w̄ .

We will not distinguish between the (1,1) - form Kγ(w)d w̄ ∧d w and the co-efficient (n ×n)

matrix Kγ(w). Both of these, depending on the context, will be called the curvature of the

vector bundle ET . The curvature of a vector bundle with respect to two frames transforms

according the rule

Kγg (w) = g−1(w)Kγ(w)g (w), w ∈Ω0,

where γ = (γ1, . . . ,γn) is a frame for ET over an open subset Ω0 ⊆Ω∗ and g : Ω0 7→ GLn(C) is

a change of frame. If the rank of the bundle is greater than 1, although the curvature Kγ(w)

depends on the frame γ, eigenvalues of the curvature are invariant for the bundle ET . Cowen

and Douglas have shown that a complete set of invariants for the bundle ET involves curva-

ture and a number of its covariant derivatives,

Kzi z̄ j , 0 ≤ i ≤ j ≤ i + j ≤ n,
(
(i , j ) 6= (n,0), (0,n)

)
,

where rank of ET equal to n (cf. [13, Theorem 3.17]). The case of rank 1 is very special. In this

case, the curvature of the bundle ET w.r.t the frame γ is of the form

Kγ(w) =− ∂2

∂w∂w̄
log‖γ(w)‖2

and the definition of the curvature is independent of the choice of the frame γ. In fact if γ̃ is

another frame for ET , then γ̃ = φγ for some non vanishing holomorphic function φ and the

harmonicity of the log |φ(w)| gives Kγ(w) = Kγ̃(w). So, in the case of a line bundle bundle

ET , we simply denote the curvature by K (w) as it’s definition is independent of the choice of

the frame. We also denote the curvature by KT (w) and call it curvature for the operator T.

Let U∗+ be the backward shift operator on the Hilbert space `2(N). For w in the unit disc

D, the vector γ(w) := (1, w, w 2, . . . , w p , . . .) is in `2(N) and U∗+(γ(w)) = wγ(w). In this case, it

is not hard to see that dimker(U∗+ −w) = 1 and (U∗+ −w) is an onto linear map for all w ∈ D.
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Consequently, γ defines a holomorphic curve in Gr(`2(N),1). The corresponding holomor-

phic Hermitian vector bundle on D is the trivial bundle with the metric ‖γ(w)‖2 = (1−|w |2)−1

at w . Now an easy computation shows that KU∗+ (w) =−(1−|w |2)−2, w ∈D.

There is a very direct relationship between the operator T in B1(Ω∗) and the curvature

KT (w). This is best described in terms of the local operators T|ker(T−w)2 . Indeed, the two vec-

tors γ(w),γ′(w) span ker(T −w)2. With respect to the orthonormal basis obtained from these

two vectors using the Gram-Schmidt process, we have the matrix representation for the local

operator

T|ker(T−w)2 =
(

w (−KT (w) )−1/2

0 w

)
, w ∈Ω∗.

Cowen and Douglas have shown that the local operators T|ker(T−w)2 , w ∈Ω∗, altogether

determine the unitary equivalence class for an operator T ∈ B1(Ω∗) (cf. [13, Theorem 1.6]).

Consequently the curvature KT (w) is a complete invariant for the rank 1 bundle ET or equiv-

alently for the unitary equivalence class of operator T.

Theorem 1.3 (Cowen-Douglas). Two operators T and T̃ in B1(Ω∗) are unitarily equivalent if

and only if the local operators T|ker(T−w)2 and T̃|ker(T̃−w)2 are unitarily equivalent for all w ∈Ω∗.

Equivalently, T and T̃ are unitarily equivalent if and only if KT (w) =KT̃ (w) for all w ∈Ω∗.

Finally, Cowen and Douglas also provided a model for the operators in the class B1(Ω∗),

which is easy to describe:

If T ∈ B1(Ω∗) then T is unitarily equivalent to the adjoint M∗ of the operator of multi-

plication M by the coordinate function on some Hilbert space HK consisting of holomorphic

function onΩ possessing a reproducing kernel K . From now on, we let M denote the operator

of multiplication by the coordinate function and as usual M∗ denotes its adjoint.

The kernel K is complex valued function defined on Ω×Ω, which is holomorphic in

the first and anti-holomorphic in the second variable and is positive definite in the sense that((
K (zi , z j )

))
is positive definite for every subset {z1, . . . , zn} of the domain Ω. We will therefore

assume, without loss of generality, that an operator T in B1(Ω∗) has been realized as the op-

erator M∗ on some reproducing kernel Hilbert space HK . Since w̄ 7→ K (·, w) is a frame for the

bundle ET over the domainΩ∗, the curvature KT (z̄) can be computed using kernel function.

KT (z̄) =− ∂2

∂w∂w̄
logK (w, w)|w=z =−‖Kz‖2‖∂̄Kz‖2 −|〈Kz , ∂̄Kz〉|2

(K (z, z))2
, z ∈Ω,

where Kz and ∂̄Kz are the vectors

Kz(u) := K (u, z) ,u ∈Ω,

∂̄Kz(u) := ∂

∂w̄
K (u, w) |w=z ,u ∈Ω,



4 1. Introduction

in HK . Thus the curvature KT (w) is a real analytic function on Ω∗. As we have seen earlier

that KT (w) is independent of the choice of a frame of ET , it follows that expression for KT (w)

in terms of kernel function K is independent of the representation of T as the operator M∗

on some reproducing kernel Hilbert space HK possessing K as a reproducing kernel. Indeed,

if T also admits a representation as the adjoint of the multiplication operator on another re-

producing kernel Hilbert space H K̃ , then we must have K (z, w) =ϕ(z)K̃ (z, w)ϕ(w) for some

non vanishing holomorphic function ϕ defined on Ω, see [13, Section 1.15] . This implies
∂2

∂w∂w̄ logK (w, w)|w=z = ∂2

∂w∂w̄ logK̃ (w, w)|w=z .

Normalized kernel: For any fixed but arbitrary ζ ∈ Ω, the function K (z,ζ) is non-zero

in some neighbourhood, say U , of ζ. The function ϕζ(z) := K (z,ζ)−1K (ζ,ζ)1/2 is then holo-

morphic. The linear space (H ,K(ζ)) := {ϕζ f : f ∈ HK } then can be equipped with an inner

product making the multiplication operator Mϕζ unitary. It then follows that (H ,K(ζ)) is a

space of holomorphic functions defined on U ⊆Ω, it has a reproducing kernel K(ζ) defined by

K(ζ)(z, w) = K (ζ,ζ)K (z,ζ)−1K (z, w)K (w,ζ)−1, z, w ∈U ,

with the property K(ζ)(z,ζ) = 1, z ∈U and finally the multiplication operator M on HK is uni-

tarily equivalent to the multiplication operator M on (H ,K(ζ)). The kernel K(ζ) is said to be

normalized at ζ.

The realization of an operator T in B1(Ω∗) as the adjoint of the multiplication operator

on HK is not canonical. The kernel function K is determined only upto conjugation by a holo-

morphic function. Consequently, one sees that the curvature Kk is unambiguously defined.

on the other hand, Curto and Salinas (cf. [16, Remarks 4.7 (b)]) prove that the multiplication

operators M on the two Hilbert spaces (H ,K(ζ)) and (Ĥ , K̂(ζ)) are unitarily equivalent if and

only if K(ζ) = K̂(ζ) in some small neighbourhood of ζ. Thus the normalized kernel at ζ, that is,

K(ζ) is also unambiguously defined. It follows that the curvature and the normalized kernel at

ζ serve equally well as a complete unitary invariant for the operator T in B1(Ω∗).

Since the unitary equivalence class of the local operators T|ker(T−w)2 , or equivalently, the

curvature KT (w) is a complete invariant for the unitary equivalence class of T, it is natural to

study how other properties of the local operators, or equivalently, the curvature KT (w) are

related to those of the operator T. For instance, if T is a contraction in B1(D), then the local

operator T|ker(T−w)2 is also a contraction for each w ∈ D. Now, using the matrix representa-

tion of the local operator, we conclude that KT (w) ≤ −(1− |w |2)−2. This inequality for the

curvature can be generalised considerably. Recall that a compact subset X ⊆C is said to be a

spectral set for an operator A in L (H ), if

σ(A) ⊆ X and sup{‖r (A)‖ : r ∈ Rat(X ) and ‖r‖∞ ≤ 1} ≤ 1,

where Rat(X ) denotes the algebra of rational function whose poles are off X and ‖r‖∞ de-

notes the sup norm over the compact subset X . Equivalently, X is a spectral set for the op-
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erator A if the homomorphism ρA : Rat(X ) → L (H ) defined by the formula ρA(r ) = r (A) is

contractive. There are plenty of examples where the spectrum of an operator is a spectral set.

This is the case for subnormal operators, see [23, Chapter 21].

Curvature Inequality: For every operator T in B1(Ω∗), which admits Ω∗ as a spectral

set, we have

KT (w̄) ≤−4π2(SΩ∗(w̄ , w̄))2, w̄ ∈Ω∗, (1.1)

where SΩ∗ is the Sz̈ego kernel of the domainΩ∗.

In the following chapters, we will study (i) briefly the case whenΩ is the unit disc D, (ii)

mainly the case when Ω is a finitely connected bounded planar domain and (iii) finally, the

case when Ω is a bounded domain in Cm . We recall the preliminaries, closely following [2],

[20], in the case of a planar domain that we will be using throughout.

Definition 1.4 (Hardy space ). Let Ω be a bounded domain in C and O (Ω) be the space of

holomorphic functions onΩ. The Hardy space onΩ is defined to be the linear space

H 2(Ω) := { f ∈O (Ω) : | f (z)|2 ≤ v f (z), for some harmonic function v f (z) onΩ}.

As every function f in H 2(Ω) admits a harmonic majorant v f (z), it also admits a least

harmonic majorant, say u f (z), on Ω. Fix a point p ∈Ω. It is easily verified that ‖ f ‖2 := u f (p)

defines a norm on H 2(Ω) and makes it into a Hilbert space. It is known that different choice

of p ∈Ω induces an equivalent norm on H 2(Ω) (cf. [20, Ch.3, Theorem 2.1]).

Let dωp be the harmonic measure relative to the point p ∈Ω and let (L2(∂Ω),dωp ) de-

note the space of square integrable functions defined on ∂Ωwith respect to the measure dωp .

The closed subspace

(H 2(∂Ω),dωp ) := {
f ∈ (L2(∂Ω),dωp ) :

∫
∂Ω

f g dωp = 0, g ∈O (Ω)
}
,

where O (Ω) is the space of all functions which are holomorphic in some open neighborhood

of the closed setΩ, is the Hardy space of ∂Ω.

A function f in H 2(Ω) admits a boundary value f̂ . This means that the limz→λ f (z) exists

(almost everywhere relative to dωp ) as z approaches λ ∈ ∂Ω through any non-tangential path

inΩ. Define the function f̂ : ∂Ω→C by setting f̂ (λ) = limz→λ f (z). It then follows that the map

f 7→ f̂ is an isometric isomorphism between the two hardy spaces H 2(Ω) and (H 2(∂Ω),dωp )

(cf. [20, Ch 4, Theorem 4.4]). Because of this correspondence, we often denote the Hardy

space by (H 2(Ω),dωp ).

Sz̈ego kernel: The harmonic measure dωp on ∂Ω is boundedly mutually absolutely con-

tinuous w.r.t the arc length measure d s on ∂Ω. The norm given by ‖g‖2 = ∫
∂Ω |g |2 d s, for

g ∈ L2(∂Ω,dωp ) will then define an equivalent norm on L2(∂Ω). We denote the the subspace
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H 2(∂Ω), endowed with this new norm, by (H 2(∂Ω),d s). Consequently, using the isomorphism

between H 2(Ω) and H 2(∂Ω), we have an equivalent norm on H 2(Ω) making it into a Hilbert

space, which we denote by (H 2(Ω),d s), so that the map f 7→ f̂ is an isometric isomorphism

between the two Hilbert spaces (H 2(Ω),d s) and (H 2(∂Ω),d s). Since (H 2(Ω),dωp ) is a repro-

ducing kernel Hilbert space( cf. [20, Ch 3, Proposition 2.4]), it follows that the Hilbert space

(H 2(Ω),d s) is also a reproducing kernel Hilbert space. The reproducing kernel associated to

(H 2(Ω),d s) is called the Sz̈ego kernel and is denoted by SΩ(z, w), for z, w ∈Ω.

Flat unitary bundle and bundle shift operator: Let α be an element in Hom(π1(Ω),T),

that is, it is a homomorphism from the fundamental group π1(Ω) of Ω into the unit circle T.

Such homomorphism is also called a character. Each of these character induce a flat unitary

bundle Eα of rank 1 on Ω and conversely every flat unitary bundle of rank 1 on the domain

Ω is equivalent to one such bundle Eα for some character α (cf. [9, Pg. 850-851]). Follow-

ing theorem establishes one to one correspondence between Hom(π1(Ω),T) and the set of

equivalence classes of flat unitary vector bundle overΩ of rank 1 (cf. [22, p. 186].)

Theorem 1.5. Two rank one flat unitary vector bundle Eα and Eβ are equivalent as flat unitary

vector bundle if and only if their inducing characters are equal that is α=β.

Let Eα be a flat unitary vector bundle of rank one over the domainΩ. If f is a holomor-

phic section of the bundle Eα, then for z ∈Ui ∩U j , where {Ui ,φi }i∈I is a coverng ofΩ, we have

that |(φz
i )−1( f (z))| = |(φz

j )−1( f (z))|. Thus the function h f (z) := |(φz
i )−1( f (z))|, z ∈Ui , is well de-

fined on all ofΩ and is subharmonic there. Let H 2
Eα

be the linear space of those holomorphic

sections f of Eα such that the subharmonic function (h f )2 on Ω is majorized by a harmonic

function onΩ. Let uE
f be the least harmonic majorant for a section f ∈ H 2

Eα
. As before, fixing a

point p inΩ, the norm defined by ‖ f ‖2
Eα,p := uE

f (p) on H 2
E (Ω) makes it into a Hilbert space. A

bundle shift TEα is simply the operator of multiplication by the coordinate function on H 2
Eα

.

Like the usual Hardy space, in this case also, every section f ∈ H 2
Eα

admits boundary

value f̂ (almost every where relative to dωp )and the map f 7→ f̂ is a linear isomorphism be-

tween H 2
Eα

and its boundary value. In fact it can be shown that

‖ f ‖2 =
∫
∂Ω

| f̂ (z)|2 dωp (z).

We often denote the Hilbert space H 2
Eα

by (H 2
Eα

,dωp ) to clarify the norm. It is also known that

different choices of p inΩwill induce an equivalent norm H 2
Eα

.

Theorem 1.6 (Abrahamse and Douglas). Let Eα and Eβ be two rank one flat unitary vector

bundles induced by the homomorphisms α and β respectively. Then the bundle shift TEα on

(H 2
Eα

,dωp ) is unitarily equivalent to the bundle shift TEβ on (H 2
Eβ

,dωp ) if and only if Eα and

Eβ are equivalent as flat unitary vector bundles.
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An operator T in L (H ) is said to be rationally cyclic if there exist a vector v0 in H

such that {r (T )(v0) | r ∈ Rat(Ω)} is dense in H . It is not very hard to verify that TEα is a pure,

rationally cyclic subnormal operator with spectrumΩ and normal spectrum ∂Ω. In fact these

are the characterizing property for the rank one bundle shift.

Theorem 1.7 ( Abrahamse and Douglas). Every pure, rationally cyclic subnormal operator

with spectrum equal to Ω and the normal spectrum contained in ∂Ω is unitarily equivalent

to a bundle shift TEα on (H 2
Eα

,dωp ) for some character α.

If we consider the norm ‖ f ‖2 = ∫
∂Ω | f̂ (z)|2d s, then it is easy to see that this defines

an equivalent norm on H 2
Eα

. We denote the Hilbert space H 2
Eα

endowed with this norm by

(H 2
Eα

,d s). It follows that the operator TEα on (H 2
Eα

,d s) is a rationally cyclic pure subnormal

operator with spectrum equal toΩ and normal spectrum equal to ∂Ω. Hence the operator TEα

on (H 2
Eα

,d s) must be unitarily equivalent to TEβ on (H 2
Eβ

,dωp ) for some character β. We have

two kind of bundle shifts namely {TEα on (H 2
Eα

,d s) :α ∈Tn} and {TEα on (H 2
Eα

,dωp ) :α ∈Tn}.

We have established a bijective correspondence between these two family which preserve the

unitary equivalence class.

Let Gr(H 2
Eα

(Ω),1) be the Grassmannian manifold of 1-dimensional subspaces in the

Hardy space H 2
Eα

(Ω). It can be shown that the map κ :Ω→ Gr(H 2
Eα

(Ω),1), κ(z) = ker(TE − z)∗

is anti-holomorphic. Pulling back the tautological bundle under the map κ, we get an anti-

holomorphic Hermitian vector bundle Eκ onΩ.

As a consequence of the theorem of Abrahamse-Douglas combined with that of Cowen-

Douglas, we see that Eκ and Fκ are (locally) equivalent as holomorphic Hermitian vector bun-

dles onΩ if and only if E and F are equivalent as flat unitary vector bundles onΩ.

A natural question is to determine which of the holomorphic Hermitian vector bundles

onΩ∗ correspond to a flat unitary vector bundle onΩ. In other words, given the holomorphic

Hermitian vector bundle ET , T in B1(Ω∗), how to decide if T ∗ is a bundle shift.

Let B[w] := { f ∈O (Ω∗) : ‖ f ‖∞ ≤ 1, f (w) = 0}. It is well-known that the extremal problem

sup{| f ′(w)| : f ∈B[w]} (1.2)

admits a solution, say, Fw ∈ B[w]. The function Fw is called the Ahlfor’s function and maps

Ω∗ ontoD in a n to 1 fashion if the connectivity of the regionΩ∗ is n. Indeed, Fw is a branched

covering map and F ′
w (w) = 2πSΩ∗(w, w), where SΩ∗(w, w) is the Sz̈ego kernel, the reproduc-

ing kernel for the Hardy space (H 2(Ω∗),d s).

The Poincare metric for the trivial holomorphic line bundle onΩ∗ is F ′
w (w)d w ⊗d w̄ at

w ∈Ω∗. We have the curvature inequality

− ∂2

∂w ∂w̄
logF ′

w (w) ≤−F ′
w (w)2, w ∈Ω∗.
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We have equality throughout the domain Ω∗ if it is simply connected. However if Ω∗ is

not simply connected, it has been shown that the inequality is strict for each w ∈Ω (cf. [36]).

Pick any operator T in the Cowen-Douglas class B1(Ω∗), which admits Ω∗ as a spectral

set. ThenΩ∗ is also a spectral set for the local operators T|ker(T−w) w ∈Ω∗. Representing these

operators in the form
(

w (−KT (w) )−1/2

0 w

)
and applying the usual functional calculus, we obtain

r
(
T|ker(T−w)2

)= (
r (w) r ′(w)p−KT (w)

0 r (w̄)

)
, r ∈ Rat(Ω∗).

Clearly, finding

sup{‖r
(
T|ker(T−w)2

)‖ : r ∈ Rat(Ω∗)‖r‖∞ ≤ 1}

is equivalent to finding a solution to the extremal problem (1.2). Thus for operators T in

B1(Ω∗) which admitΩ∗ as a spectral set, we have the curvature inequality

K%(w) :=− ∂2

∂w ∂w̄
log%(w) ≤−F ′

w (w)2, w ∈Ω∗,

where %(w) = ‖γ(w)‖2 for some non-vanishing holomorphic section γ of the line bundle ET

onΩ∗.

For example, consider the operator T ∗
Eα

on (H 2
Eα

,d s). It follows from a result of Abra-

hamse and Douglas that the operator T ∗
Eα

on (H 2
Eα

,d s) belongs to B1(Ω∗) for every character

α. Since TEα is a subnormal operator, Ω∗ is a spectral set for the operator T ∗
Eα

. Consequently,

the curvature of T ∗
Eα

satisfy the above inequality.

Fix w0 ∈ Ω∗ and ask if there exists an (extremal) operator T in B1(Ω∗) admitting Ω∗

for which K%(w0) = Fw0 (w0)2. The answer is that such extremal operators exist. Indeed, for

a fixed w0, there is a rank 1 bundle shift TEα on (H 2
Eα

,d s), whose adjoint is extremal at w0.

However, it is not clear if an extremal operator must be the adjoint of a bundle shift except

in the case of a simply connected domain. Indeed, R. G. Douglas had raised the following

question in the case of the unit disc:

Question 1.8 (R. G. Douglas). For a contraction T in B1(D), if KT (w0) =−(1−|w0|2)−2 for some

fixed w0 in D, then does it follow that T must be unitarily equivalent to the operator U∗+?

It is easy to see that the answer is negative by means of examples (cf. [25]). However, in

this thesis, it is shown that the question has an affirmative answer within a smaller class of

contractions in B1(D). IfΩ is a finitely connected domain, then the question of Douglas takes

the form: For an operator T in B1(Ω∗) admittingΩ∗ as a spectral set, if KT (w̄0) = SΩ∗(w̄0, w̄0),

w0 ∈ Ω, then does it follow that T must be unitarily equivalent to an extremal operator at

w0? This is a question of uniqueness of the extremal operators. The situation here is more

complicated. In this case, it is not obvious that each of the bundle shifts must be extremal



9

for some w inΩ. Therefore it is natural to ask which of the bundle shifts occur as an extremal

operator. The unexpected answer that not all of them occur as extremal operators follows

from first showing that if w0 is in Ω∗, then there is a unique bundle shift whose adjoint is an

extremal operator at w0. The proof actually identifies the extremal bundle shifts explicitly.

We now describe our results on dilation of the local operators in the multi-variate con-

text. Let Ω be a bounded domain in Cm . Set Ω∗ = {z̄ : z ∈Ω}. A commuting m- tuple of oper-

ators TTT = (T1, . . . ,Tm) is said to be in the Cowen-Douglas class B1(Ω∗) if the dimension of the

joint kernel ∩m
i=1 ker(Ti −wi ) is 1 and there is a vector γ(w) ∈ ∩m

i=1 ker(Ti −wi ) such that the

map w 7→ γ(w) is holomorphic. A formal definition is given in Chapter 4. The local operator

at w is defined to be the m- tuple:

Ni (w) = Ti |Mw
, Mw =∩m

`,k=1 ker(T`−w`)(Tk −wk ).

In the paper [14], it is proved that two such operators in B1(Ω∗) are unitarily equivalent if

and only if the local operators are unitarily equivalent. As before, the unitary equivalence is

determined by the curvature

KTTT (w) = ∂i ∂̄ j log‖γ(w)‖2.

The space Mw is the span of the vectors γ(w), (∂1γ)(w) . . . , (∂mγ)(w). Let v ∈ Cm . Con-

sider the two dimensional subspace Sw (v) of Mw spanned by the vectors γ(w) and ∂vγ(w).

The matrix representation of the restriction of the local operator Ni (w) to Sw (v), with respect

to an orthonormal basis obtained using the Gram-Schmidt process is of the form(
wi

vip
〈−KTTT (w)v,v〉

0 wi

)
, 1 ≤ i ≤ m.

Clearly, if the commuting m- tuple TTT admits a O (Ω∗) boundary dilation, then it serves as a

dilation for the local operators. What if we assume that all the local operators admit a bound-

ary dilation, then does it follow that TTT admits such a dilation as well? The answer, in general,

is no. A related question that we study, using the notion of a module tensor product, is to

investigate which local operators can be realized as restrictions of some commuting m- tuple

in the Cowen-Douglas class.

Given any two Hilbert modules M and N over a function algebra A (X ), X ⊂Cm , let S

be the submodule generated by the vectors{
r · f ⊗ g − f ⊗ r · g : f ∈M , g ∈N ,r ∈A

}
.

The module tensor product M ⊗A N is the quotient (Hilbert) module(
M ⊗N

)ªS ,
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again over the algebra A , where the map

(r, [ f ⊗ g ]) → PS ⊥(r · f ⊗ g )|S ⊥ , f ∈M , g ∈N

defines the module map for the quotient module. In other words, for r ∈A , the map

r 7→ r (MMM)⊗ IN , where (r (MMM) f ) = r · f , f ∈M ,

is a power dilation of the quotient map. This need not be a normal boundary dilation unless

the commuting tuple MMM is jointly subnormal whose normal spectrum lies in the boundary

of Ω. Fixing M to be a module in the Cowen-Douglas class and taking N to be a finite di-

mensional module with different Hermitian structures, we describe what are the quotient

modules. This provides an explicit construction of a dilation for a class of finite dimensional

modules. We identify those contractive modules which can be realized as the quotient of

some module in the Cowen-Douglas class.

Main results of the thesis:

Chapter 2 – Curvature Inequality and the case of unit disc: In this chapter, first we establish

the curvature inequality (1.1). In the case of the unit disc D, we know that −4π2(SD(w̄ , w̄))2 =
−(1− |w |2)−2. Thus if KT (w̄) = −4π2(SD(w̄ , w̄))2 for all w in some open subset of D, then it

must be unitarily equivalent to the adjoint of the unilateral backward shift U∗+ by the Cowen-

Douglas theorem since KU∗+ (w̄) = −(1− |w |2)−2. However if KT (w̄) = −4π2(SΩ∗(w̄ , w̄))2 for

some fixed w in D, then the question of R. G. Douglas asks if T must be unitarily equivalent

to U∗+. It is easy to see that the answer is negative by means of examples. The theorem below

provides an affirmative answer to the question of R. G. Douglas after making some restrictive

assumptions. To understand the case of equality at some fixed point in the curvature inequal-

ity, the following lemma is useful.

Lemma. Let T be a contraction in B1(D) and HK be the associated reproducing kernel Hilbert

space. Then for an arbitrary but fixed ζ ∈D, we have KT (ζ̄) =− 1
(1−|ζ|2)2 if and only if the vectors

K̃ζ, ∂̄K̃ζ are linearly dependent in the Hilbert space H K̃ , where K̃ (z, w) = (1− zw̄)K (z, w).

Applying the preceding lemma, we obtain the proposition given below.

Proposotion. Let T be any contractive co-hyponormal unilateral backward weighted shift op-

erator in B1(D). If KT (w0) = −(1− |w0|2)−2 for some w0 ∈ D, then the operator T is unitarily

equivalent to U∗+, the standard unilateral backward shift operator.

The proof of this Proposition yields a slightly stronger result for non-zero points in D.
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Lemma. Let T be any contractive unilateral backward weighted shift operator in B1(D). If

KT (w0) =−(1−|w0|2)−2 for some w0 ∈D, w0 6= 0, then the operator T is unitarily equivalent to

U∗+, the standard unilateral backward shift operator.

Let T be a operator in B1(D). Let ζ be a fixed but arbitrary point in D and φζ be an au-

tomorphism of the unit disc taking ζ to 0. The operator φζ(T ) is also in B1(D) and may be

realized as the adjoint of multiplication operator M on a reproducing kernel Hilbert space

Hφζ(T ). We may assume without loss of generality that the reproducing kernel Kφζ(T ) of the

Hilbert space Hφζ(T ), is normalized at 0, that is, Kφζ(T )(z,0) = 1 for all z in a neighbourhood

of 0. In the following theorem it is shown that the question of R. G. Douglas has an affirma-

tive answer in the class of co-subnormal contraction after imposing a mild assumption on the

Hilbert space Hφζ(T ).

Theorem. Let T be a co-subnormal operator in B1(D) with ‖T ‖ ≤ 1. Let ζ be a fixed but arbitrary

point in D. Assume that polynomials are dense in Hφζ(T ) and that KT (ζ) =− 1
(1−|ζ|2)2 , then T is

unitarily equivalent to U∗+, the standard unilateral backward shift operator.

Chapter 3 – Extremal operator and Uniqueness: The following lemma gives a natural bi-

jective correspondence between the bundle shifts {TEα on (H 2
Eα

,dωp ) :α ∈Tn} and the bundle

shifts {TEβ on (H 2
Eβ

,d s) :β ∈Tn}, which preserves the (respective) unitary equivalence class.

Lemma. If v be a positive continuous function on ∂Ω, then there exist a function F in H∞
γ (Ω)

for some character γ such that |F |2 = v almost everywhere (w.r.t arc length measure) on ∂Ω. In

fact F is invertible in the sense that there exist G in H∞
γ−1 (Ω) so that FG = 1 onΩ.

An alternative proof of the following characterization of pure, rationally cyclic, subnor-

mal operator with spectrum equal to Ω and normal spectrum in ∂Ω, proved by Abrahamse

and Douglas (see [2, Theorem 11]) have been obtained using the preceding lemma.

Theorem. Every pure, rationally cyclic subnormal operator with spectrum equal to Ω and

whose normal spectrum lies in ∂Ω, is unitarily equivalent to a bundle shift TEα on
(
H 2

Eα
,dωp

)
for some character α.

Let (H 2(Ω),λd s) be the weighted Hardy space, where λ is some positive continuous

function on ∂Ω. Since the multiplication operator M on (H 2(Ω),λd s) is a pure subnormal

operator with spectrum equal to Ω and normal spectrum equal to ∂Ω, it must be unitarily

equivalent to a bundle shift TEα on (H 2
Eα

,d s) for some characterα. We determine the character

α explicitly. Consequently, the lemma given below follows.

Lemma. Let λ1,λ2 be two positive continuous function on ∂Ω. Let uλk be the harmonic func-

tion onΩwith continuous boundary value 1
2 logλk . Then the operators M on the Hilbert spaces
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(
H 2(Ω),λ1d s

)
and

(
H 2(Ω),λ2d s

)
are unitarily equivalent if and only if

exp
(
i c j (λ1)

)= exp
(
i c j (λ2)

)
, j = 1, . . . ,n,

where the constants c j (λk ) are given by

c j (λk ) =−
∫
∂Ω j

∂

∂ηz

(
uλk (z)

)
d s(z), for j = 1,2, ...,n,k = 1,2.

It is also shown that given any character α, there exists a positive continuous function

λ on ∂Ω so that the operator M on (H 2(Ω),λd s) is unitarily equivalent to the bundle shift TEα

on (H 2
Eα

,d s).

Then which of the operators M∗ on the weighted Hardy space (H 2(Ω),λd s) attain equal-

ity, in the curvature inequality at a fixed point ζ̄ ∈ Ω∗ are found. A criterion for the case of

equality at one point is given. The Garabedian kernel Lw (z) associated to the usual Hardy

space (H 2(Ω),d s) together with the Sz̈ego kernel are significant in the study of the confor-

mal geometry of a finitely connected domain Ω. Nehari has established the existence of a

Garabedian like kernel Lλw (z) associated to the Hardy space (H 2(Ω),λd s), which is essential

in describing the criterion for equality at a point in the curvature inequality as shown below.

Lemma. The operator M∗ on the Hilbert space
(
H 2(Ω),λd s

)
is extremal at ζ̄ if and only if

L(λ)
ζ

(z) and the Sz̈ego kernel at ζ, namely Sζ(z) have the same set of zeros inΩ.

Using the preceding lemma, a positive continuous function λ on ∂Ω for which M∗ on

the Hilbert space (H 2(Ω),λd s) is extremal at ζ̄ is constructed. Next, the uniqueness of the

extremal operator at ζ̄ in the class of “adjoint of the bundle shifts" is established.

Theorem (Uniqueness). Let ζ be an arbitrary but fixed point in Ω. If the bundle shift TEα on

(H 2
Eα

,d s) and the bundle shift TEβ on (H 2
Eβ

,d s) are extremal at the point ζ̄, that is, if they satisfy

KT ∗
Eα

(ζ̄) =−4π2(SΩ∗(ζ̄, ζ̄))2 =KT ∗
Eβ

(ζ̄),

then the bundle shifts TEα and TEβ are unitarily equivalent, which is the same as α=β.

It is shown that the the character α for the bundle shift TEα on (H 2
Eα

,d s) which is ex-

tremal at ζ̄, is uniquely determined by the following n tuple of complex number of unit mod-

ulus: {
exp

(
2πi (1−ω1(ζ))

)
, ...,exp

(
2πi (1−ωn(ζ))

)}
,

whereω j (z) is the harmonic function onΩwhose boundary value equal to 1 on ∂Ω j and 0 on

other boundary components.
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From this result, it follows that if n ≥ 2, then the set of extremal operators does not

include the adjoint of many of the bundle shifts. When Ω is doubly connected, it turns out

that for every character α, except one, there is a point ζ̄ ∈Ω∗ such that the bundle shift TEα on

(H 2
Eα

,d s) is an extremal operator at the point ζ̄.

Chapter 4 – Generalized Curvature Inequality: In this chapter we consider a bounded

domainΩ in Cm . The matricial representation of the localization of a commuting m-tuple of

bounded operators in the Cowen-Douglas class Bn(Ω∗),Ω∗ ⊆Cm , is given. Let TTT = (T1, . . . ,Tm)

be a commuting m-tuple of bounded operators in Bn(Ω∗) and ETTT be the associated rank n

holomorphic Hermitian vector bundle over Ω∗ induced by the operator TTT . Let Mw be the

(finite dimensional) space ∩m
i , j=1 ker

(
(Ti −wi )(T j −w j ), w ∈Ω∗ and Nw = (N1(w), . . . , Nm(w))

be the tuple of nilpotent operator defined by Ni (w) = (Ti − wi ) |Mw . We denote the block

operator matrix
((

Ni (w)N j (w)∗
))m

i , j=1 by Nw N∗
w .

Proposotion. There exists an orthonormal basis in Mw such that the matrix representation of

Nw N∗
w with respect to this basis takes the form,

Nw N∗
w =

(
K (w)−1 0

0 0

)
, w ∈Ω∗,

where the curvature K of the bundle ETTT is computed w.r.t a frame, defined on a neighborhood

of w, which is orthonormal at w.

This representation makes it possible to use methods very similar to the ones employed

in the case of operators in the case of B1(Ω∗) to obtain a curvature inequality for commuting

m- tuples TTT = (T1, . . . ,Tm) in Bn(Ω∗), which admit Ω∗ as a joint spectral set. In particular, for

m = 1, for a fixed w ∈Ω∗, we obtain the inequality

K (w) ≤−4π2SΩ∗(w, w)2In ,

where the curvature K of the bundle ET is computed with respect to a frame defined in a

neighbourhood of w, which is orthonormal at w.

Chapter 5 – Module tensor product and dilation:
Let Ω be a bounded domain in Cm and C2

w (a) be the Hilbert module over the function

algebra O (Ω), where the module action is defined by the map:

(r,h) 7→ ( r (w) (Or (w)·a)
0 r (w)

)
h, a ∈Cm , w ∈Ω, r ∈O (Ω),h ∈C2.

The module tensor product of HK and C2
w (a) over the function algebra O (Ω), that is,

HK ⊗O (Ω)C
2
w (a) is shown to be isomorphic to C2

w (â), where â is the vector given by

â = ap
1−〈KK (w̄)a, a〉 , w ∈Ω.
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In the case of a planar domainΩ, we prove the following lemma on the continuity of the

curvature at a fixed point w inΩ as a function of the characters α.

Lemma. For a fixed w inΩ, the function φ :Tn →R defined by φ(α) =Kα(w̄) is continuous.

The existence of the extremal operators at w, along with the Lemma on continuity of the

curvature are essential ingredients in the construction of an explicit dilation for the contrac-

tive modules of the formC2
w (a) over the function algebra O (Ω). In the case of the unit discD, it

is well known that any two minimal Ŝilov resolution for a contractive module M over O (D) are

isomorphic. However this fails in the case of a finitely connected domain. Using the Lemma

on continuity of curvature, we provide another example to demonstrate this phenomenon.
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Chapter 2

Curvature Inequality and The case of the

unit disc

2.1 Curvature Inequality

In the beginning, we assume that Ω is a bounded finitely connected planar domain whose

boundary consists of n +1 jordan analytic curves. Setting Ω∗ = {z̄ : z ∈Ω}, we then describe

the functional calculus for the local operators T|ker(T−w)2 for T in B1(Ω∗). As a consequence,

we obtain a curvature inequality for the operator T which admitsΩ∗ as a spectral set. We will

then specialize to the caseΩ=D.

Let T be an operator in B1(Ω∗). We assume without loss of generality that the operator

T has been realized as M∗ on a Hilbert space HK of holomorphc functions defined on Ω

possessing a reproducing kernel K on Ω×Ω. The curvature KT (w̄) of the operator T can be

computed using kernel function by following formula

KT (w̄) =− ∂2

∂z∂z̄
logK (z, z)|z=w =−‖Kw‖2‖∂̄Kw‖2−|〈Kw ,∂̄Kw 〉|2

(K (w,w))2 , w̄ ∈Ω∗,

Since (M∗− w̄)Kw = 0 for all w̄ ∈Ω∗, it follows that (M∗− w̄)∂̄Kw = Kw . The subspace

ker(M∗− w̄)2 = span{Kw, ∂̄Kw} of HK is invariant for M∗. Representing the restriction of the

operator M∗ to this subspace with respect to the orthonormal basis, obtained from {Kw , ∂̄Kw }

by applying Gram-Schmidt process, we have

M∗
|ker(M∗−w̄)2 =

(
w̄ 1p−KT (w̄)

0 w̄

)
.

For any r ∈ Rat(Ω∗), it is not hard to verify that

r
(
M∗

|ker(M∗−w̄)2

)= (
r (w̄) r ′(w̄)p−KT (w̄)

0 r (w̄)

)
.
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Assume thatΩ∗, the closure ofΩ∗, is a spectral set for the operator T in B1(Ω∗). It follows that

Ω∗ is also a spectral set for M∗ |ker(M∗−w̄)2 . It is well known that

sup{|r ′(w̄)| : ‖r‖∞ ≤ 1,r (w̄) = 0, r ∈ Rat(Ω∗)} = 2π(SΩ∗(w̄ , w̄)) = (1−|w |2)−1, w̄ ∈Ω∗,

where SΩ∗(z, w) denotes the Sz̈ego kernel of Ω∗ which is equal to the reproducing kernel

for the Hardy space (H 2(Ω∗),d s) (cf. [7, Theorem 13.1]). Now the spectral set condition for

M∗ |ker(M∗−w̄)2 will lead us to a curvature inequality (see [26, Corollary 1.2]), that is,

KT (w̄) ≤−4π2(SΩ∗(w̄ , w̄))2, w̄ ∈Ω∗. (2.1)

Equivalently, since SΩ(z, w) = SΩ∗(w̄ , z̄), z, w ∈Ω, the curvature inequality takes the form

∂2

∂w∂w̄
logKT (w, w) ≥ 4π2(SΩ(w, w))2, w ∈Ω. (2.2)

This inequality we call as curvature inequality for an operator T in B1(Ω∗) which possessed

Ω∗ as a spectral set.

2.2 The case of unit disc

The standard unilateral backward shift operator U∗+ on `2(N) is defined by

U∗
+(a0, a1, a2, . . .) = (a1, a2, . . .).

The operator U∗+ ∈ B1(D) and U∗+ is unitarily equivalent to the adjoint operator M∗ on the

Hardy space (H 2(D),d s). The reproducing kernel of the Hardy space, as is well-known, is the

Sz̈ego kernel SD(z, a) of the unit discD. It is given by the formula SD(z, a) = 1
2π(1−zā) , for all z, a

inD. The computation of the curvature of the operator U∗+ is now straightforward and is given

by the formula

−KU∗+ (w) = ∂2

∂w∂w̄
logSD(w, w) = 4π2(SD(w, w))2, w ∈D :

Since the closed unit disc is a spectral set for any contraction T (by Von Neumann inequality),

it follows from equation (2.1) that the curvature of the operator U∗+ dominates the curvature

of every other contraction T in B1(D).

KT (w) ≤KU∗+ (w) =−(1−|w |2)−2, w ∈D

Since the curvature function KT (w) on D, is a complete invariant for the unitary equivalence

class of T in B1(D), the following question of R. G. Douglas is a natural one.
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Question 2.1 (R. G. Douglas). For a contraction T in B1(D), if KT (w0) =−(1−|w0|2)−2 for some

fixed w0 in D, then does it follow that T must be unitarily equivalent to the operator U∗+?

It is known that the answer is negative (cf. [25]). However this question has an affir-

mative answer if, for instance, T is a homogeneous operator in B1(D) with ‖T ‖ ≤ 1 (cf. [25]).

We find that KT (ζ̄) = −(1− |ζ|2)−2 for some ζ ∈ D, if and only if the two vectors K̃ζ and ∂̄K̃ζ

are linearly dependent, where K̃w (z) = (1− zw̄)Kw (z) and Kw (z) is the kernel function as-

sociated with the operator T in B1(D). This simple characterization shows that the question

of Douglas has an affirmative answer in the class of contractive, co-hyponormal backward

weighted shifts. Finally, using a criterion for subnormality due to Agler [3] and imposing a

“mild assumption" on the operator, we obtain the same answer in the class of co-subnormal

contractions in B1(D).

Let T be an operator in B1(D) and HK be the associated reproducing kernel Hilbert

space so that operator T has been realized as M∗ on the Hilbert space HK . Without loss of

generality we can assume Kw 6= 0 for every w ∈ D. Let w1, . . . , wn be n arbitrary points in D

and c1, . . . ,cn be arbitrary complex numbers. Using the reproducing property of K and the

property that M∗(Kwi ) = w̄i Kwi we will have

‖M∗(
n∑

i , j=1
ci Kwi )‖2 =

n∑
i , j=1

wi w̄ j K (wi , w j )c j c̄i , ‖
n∑

i , j=1
ci Kwi )‖2 = (

n∑
i , j=1

K (wi , w j )c j c̄i .

Let K̃ (z, w) be the function (1− zw̄)K (z, w), z, w ∈ D. Now it is easy to see that the operator

M∗ on the Hilbert space HK is contractive if and only if K̃ is non-negative definite.

Lemma 2.2. Let T be a contraction in B1(D) and HK be the associated reproducing kernel

Hilbert space. Then for an arbitrary but fixed ζ ∈D, we have KT (ζ̄) =− 1
(1−|ζ|2)2 if and only if the

vectors K̃ζ, ∂̄K̃ζ are linearly dependent in the Hilbert space H K̃ .

Proof. Assume KM∗(ζ̄) = − 1
(1−|ζ|2)2 for some ζ ∈ D. Contractivity of M∗ gives us the function

K̃ :D×D 7→C defined by

K̃ (z, w) = (1− zw̄)K (z, w) z, w ∈D

is a non negative definite kernel function. Consequently there exist a reproducing kernel

Hilbert space H̃ , consisting of complex valued function on D such that K̃ becomes the re-

producing kernel for H̃ . Also note that K̃ (z, z) = (1− |z|2)K (z, z) 6= 0, for z ∈ D which gives

us K̃z 6= 0. Let ζ be an arbitrary but fixed point in D. Now it is straightforward to verify that

KT (ζ̄) =− 1
(1−|ζ|2)2 if and only if ∂2

∂z∂̄z
log K̃ (z, z)|z=ζ = 0. Since we have

∂2

∂z∂̄z
log K̃ (z, z)|z=ζ =−‖K̃ζ‖2‖∂̄K̃ζ‖2−|〈K̃ζ,∂̄K̃ζ〉|2

(K̃ (ζ,ζ))2 ,

Using Cauchy-Schwarz inequality, we see that the proof is complete.
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Remark 2.3. Two non-zero linear functional g1, g2 on a vector space are linearly dependent

if and only if ker(g1) = ker(g2). Since K̃ζ 6= 0, there are two different possibilities for the linear

dependence of the two vectors K̃ζ, ∂̄K̃ζ. First, ∂̄K̃ζ ≡ 0, that is, f ′(ζ) = 〈 f , ∂̄K̃ζ〉 = 0 for all f ∈ H̃ .

Second, ker ∂̄K̃ζ = ker K̃ζ, that is, the set { f ∈ H̃ | f ′(ζ) = 0} is equal to the set { f ∈ H̃ | f (ζ) = 0}

Remark 2.4. Let e(w) = 1p
2

(K̃w ⊗ ∂̄K̃w − ∂̄K̃w ⊗ K̃w ) for w ∈ D. A straightforward computation

shows that ‖e(w)‖2
H̃ ⊗H̃

= K̃ (w, w)2 ∂2

∂z∂̄z
log K̃ (z, z)|z=w . Now if we define

FT (z, w) := 〈e(z),e(w)〉H̃ ⊗H̃ for z, w ∈D,

then clearly FT is a non negative definite kernel function onD×D. In view of this, we conclude

that KT (ζ̄) =−(1−|ζ|2)−2 if and only if FT (ζ,ζ) = 0.

Proposition 2.5. Let T be any contractive co-hyponormal unilateral backward weighted shift

operator in B1(D). If KT (w0) =−(1−|w0|2)−2 for some w0 ∈D, then the operator T is unitarily

equivalent to U∗+, the standard unilateral backward shift operator.

Proof. Let T be a contraction in B1(D) and HK be the associated reproducing kernel Hilbert

space so that T is unitarily equivalent to the operator M∗ on HK . By our hypothesis on T we

have that operator M on HK is a unilateral forward weighted shift. Without loss of generality,

we may assume that the reproducing kernel K is of the form

K (z, w) =
∞∑

n=0
an zn w̄ n , z, w ∈D; where an > 0 for all n ≥ 0.

By our hypothesis on the operator T, we have that the operator M on HK is a contraction.

So, the function K̃ defined by K̃ (z, w) = (1−zw̄)K (z, w) is a non negative definite kernel func-

tion. Consequently, following the Remark 2.4, the function FT (w, w) defined by FT (w, w) =
K̃ (w, w)2 ∂2

∂z∂̄z
log K̃ (z, z)|z=w is also non negative definite. The kernel K (w, w) is a weighted

sum of monomials zk w̄ k , k = 0,1,2, . . . . Hence both K̃ (w, w) and FT (w, w) are also weighted

sums of the same form. So, we have

FT (w, w) =
∞∑

n=0
cn |w |2n ,

for some cn ≥ 0. Now assume KT (ζ̄) =− 1
(1−|ζ|2)2 for some ζ in D.

Case 1: If ζ 6= 0, then following Remark 2.4, we have

FT (ζ,ζ) =
∞∑

n=0
cn |ζ|2n = 0.

Thus cn = 0 for all n ≥ 0 since cn ≥ 0 and |ζ| 6= 0. It follows that FT is identically zero on D×D,

that is, ∂2

∂z∂̄z
log K̃ (z, z)|z=w̄ = 0 for all w ∈D. Hence

∂2

∂z∂̄z
logK (z, z)|z=w̄ = ∂2

∂z∂̄z
logSD(z, z)|z=w̄ for all w ∈D.
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Therefore, KT (w̄) =KU∗+ (w̄) for all w ∈Dmaking T ∼=U∗+.

Now let’s discuss the remaining case, that is KT (ζ̄) =− 1
(1−|ζ|2)2 , for ζ= 0 ∈D

Case 2: If ζ= 0, then by Lemma 2.2, we have K̃0, ∂̄K̃0 are linearly dependent. Now,

K̃ (z, w) := (1− zw̄)K (z, w) =
∞∑

n=0
bn zn w̄ n ,

where b0 = a0 and bn = an − an−1 ≥ 0, for all n ≥ 1. Consequently, we have K̃0(z) ≡ b0 and

∂̄K̃0(z) = b1z. Now K̃0, ∂̄K̃0 are linearly dependent if and only if b1 = 0 that is a0 = a1.

As an aside, we note that using this criterion, it is easy to construct a family of con-

tractive unilateral backward weighted shift operator T, not unitarily equivalent to the usual

backward shift operator U∗+, in B1(D) for which KT (0) =−1.

Since {
p

an zn}∞n=0 is an orthonormal basis for the Hilbert space HK , the operator M on

HK is an unilateral forward weighted shift with weight sequence wn =
√

an
an+1

for n ≥ 0. So the

curvature of M∗ at the point zero equal to −1 if and only if w0 =
√

a0
a1

= 1. Now if we further

assume M is hyponormal, that is, M∗M ≥ M M∗, then the sequence wn must be increasing.

Also contractivity of M implies that wn ≤ 1. Therefore if KM∗(0) = −1 for some contractive

hyponormal backward weighted shift M∗ in B1(D), then it follows that wn = 1 for all n ≥ 1.

Thus any such operator is unitarily equivalent to the backward unilateral shift U∗+ completing

the proof of our claim.

The proof of Case 1 given above proves a little more than what is stated in the proposi-

tion, which we record below as a separate Lemma.

Lemma 2.6. Let T be any contractive unilateral backward weighted shift operator in B1(D). If

KT (w0) =−(1−|w0|2)−2 for some w0 ∈D, w0 6= 0, then the operator T is unitarily equivalent to

U∗+, the standard unilateral backward shift operator.

Let T be a operator in B1(D). Let ζ be a fixed but arbitrary point in D and φζ be an au-

tomorphism of the unit disc taking ζ to 0. So, we have φζ(z) = α
z−ζ

1−ζ̄z
for some unimodular

constant α. Note that

φζ(T )−w =α(T −ζ)(1− ζ̄T )−1 −w =α(T − ᾱw+ζ
1+ζ̄ᾱw

)(1+ ζ̄ᾱw)(1− ζ̄T )−1, w ∈D.

From there it follows that φζ(T ) is also in B1(D). Let γ(w) be a frame for the associated bun-

dle ET of T so that T (γ(w)) = wγ(w) for all w ∈ D. Now it is easy to see that φζ(T )(γ(w)) =
φζ(w)γ(w) or equivalently φζ(T )(γ◦φ−1

ζ
(w)) = w(γ◦φ−1

ζ
(w)). So, γ◦φ−1

ζ
(w) is a frame for the

bundle Eφζ(T ) associated with φζ(T ). Hence the curvature Kφζ(T )(w) is equal to

∂2

∂w∂w̄
log‖γ◦φ−1

ζ (w)‖2 = |φ−1
ζ

′
(w)|2 ∂2

∂z∂z̄
log‖γ(z)‖2

|z=φ−1
ζ

(w)
= |φ−1

ζ

′
(w)|2KT (φ−1

ζ (w)).
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This leads us to the following transformation rule for the curvature

Kφζ(T )(φζ(z)) =KT (z)|φ′
ζ(z)|−2, z ∈D. (2.3)

Since |φ′
ζ
(ζ)| = (1−|ζ|2)−1, in particular we have that

Kφζ(T )(0) =KT (ζ)(1−|ζ|2)2. (2.4)

Since φζ(T ) ∈ B1(D), it may be realized as the adjoint of multiplication operator M on a re-

producing kernel Hilbert space Hφζ(T ). We may assume without loss of generality that the

reproducing kernel Kφζ(T ), associated to the Hilbert space Hφζ(T ), is normalized at 0, that is,

Kφζ(T )(z,0) = 1 for all z in a neighbourhood of 0. In the following theorem it is shown that the

question of R. G. Douglas has an affirmative answer in the class of co-subnormal contraction

with a mild assumption on the Hilbert space Hφζ(T ).

Theorem 2.7. Let T be a co-subnormal operator in B1(D) with ‖T ‖ ≤ 1. Let ζ be a fixed but

arbitrary point in D. Assume that polynomials are dense in Hφζ(T ) and that KT (ζ) =− 1
(1−|ζ|2)2 ,

then T is unitarily equivalent to U∗+, the standard unilateral backward shift operator.

Proof. Let T be a co-subnormal operator in B1(D) with ‖T ‖ ≤ 1. Let P be the operator φζ(T ).

It is straightforward to see that P is again a co-subnormal operator in B1(D) with ‖P‖ ≤ 1. Now

assume KT (ζ) =−(1−|ζ|2)−2. Following (2.4), we get that KP (0) =−1.

Let HK be the associated reproducing kernel Hilbert space with kernel function K so

that P is unitarily equivalent to M∗ on HK . Without loss of generality, we can assume that the

kernel function K is normalized at 0, that is, K0(z) = K (z,0) = 1 for all z in some neighbour-

hood of 0. By assumption, we then have polynomials are dense in HK . Since the kernel K is

analytic in first variable and co-analytic in second variable, let K (z, w) = ∑
m,n≥0 am,n zm w̄ n ,

for all z, w in some neighborhood of zero. As K (z,0) = K (0, z) = 1, we get that ai ,0 = a0,i = 0, for

all i ≥ 1 and a0,0 = 1. Note that since K is normalized at 0, we have KP (0) =−∂̄∂K (0,0) =−1.

Consider the kernel function K̃ (z, w) = (1− zw̄)K (z, w), for z, w ∈ D. From Lemma 2.2,

it follows that K̃0(z) and ∂̄K̃0(z) are linearly dependent. Since K̃0(z) = K0(z) ≡ 1, we must have

∂̄K̃0(z) ≡ c for some scalar c.

K̃ (z, w) = 1+ ∑
m,n≥0

(am+1,n+1 −am,n)zm+1w̄ n+1,

∂̄K̃0(z) = ∑
m≥0

(am+1,1 −am,0)zm+1 = (a1,1 −a0,0)z + ∑
m≥1

am+1,1zm+1.

Consequently, we have that c = 0, a1,1 = a0,0 = 1 and ai ,1 = 0, for i ≥ 2. Hence, we get that

∂̄K0(z) = z. By hypothesis, we also have KP (0) =−∂̄∂K (0,0) =−1. So, we have

‖z‖2
HK

= ‖∂̄K0(z)‖2 = ∂̄∂K (0,0) = 1 and ‖1‖2
HK

= ‖K0(z)‖2 = K (0,0) = 1.
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As the operator M on HK is contraction and ‖1‖HK = 1, we have ‖zn‖HK ≤ 1, for all

n ≥ 1. Since M on HK is a contractive subnormal operator, following Agler [3, Theorem 3.1],

we have that M is n-hyper contraction for every n ∈N. In particular, M is 2-hyper contraction,

that is, I −2M∗M +M∗2M 2 ≥ 0, equivalently, ‖ f ‖2
HK

−2‖z f ‖2
HK

+‖z2 f ‖2
HK

≥ 0, for all f ∈HK .

Since ‖1‖ = ‖z‖ = 1, taking f = 1, we have ‖z2‖ ≥ 1. But we also have ‖z2‖ ≤ 1, which gives us

‖z2‖ = 1. Inductively, by choosing f = zk , we obtain ‖zk+2‖ = 1 for every k ∈N. Hence we see

that ‖zn‖ = 1 for all n ≥ 0.

To establish that {zn | n ≥ 0} is orthonormal set in the Hilbert space HK , we need the

Lemma given below.

Lemma 2.8. Let V and W be two finite dimensional inner product space and A : V → W be a

linear map. Let {v1, v2, . . . , vk } be a basis for V and Gv , (resp. G Av ) be the grammian ((〈v j , vi 〉V ))

(resp. ((〈Av j , Avi 〉W ))). The linear map A is a contraction if and only if G Av ≤Gv .

Proof. Let x = c1v1 + c2v2 +·· ·+ cn vn be an arbitrary element in V. Then the easy verification

that ‖Ax‖2
W ≤ ‖x‖2

V is equivalent 〈G Av c,c〉 ≤ 〈Gv c,c〉 completes the proof.

Consider the two subspace V and W of HK , defined by V = ∨{1, z, · · · , zk } and W =
∨{z, z2, · · · , zk+1}. Since M is a contraction, applying the lemma we have just proved, it follows

that the matrix B defined by

B =
(
〈z j , zi 〉

)k

i , j=0
−

(
〈z j+1, zi+1〉

)k

i , j=0

is positive semi-definite. But we have ‖zi‖ = 1, for all i ≥ 0. Consequently, each diagonal

entry of B is zero. Hence tr (B) = 0. Since B is positive semi-definite, it follows that B = 0.

Therefore, 〈z j , zi 〉 = 〈z j+1, zi+1〉 for all 0 ≤ i , j ≤ k. We have K0(z) ≡ 1. So, M∗1 = M∗(K0) = 0.

From this it follows that for any k ≥ 1, we have 〈zk ,1〉 = 〈zk−1, M∗1〉 = 0. This together with

〈z j , zi 〉 = 〈z j+1, zi+1〉 for all 0 ≤ i , j ≤ k, inductively shows that 〈z j , zi 〉 = 0 for every i 6= j .

Hence {zn | n ≥ 0} forms an orthonormal set.

Since by hypothesis polynomials are dense in HK , we have {zn | n ≥ 0} forms an or-

thonormal basis for HK . Hence the multiplication operator M on HK is unitarily equivalent

to U+, the standard unilateral forward shift operator. Consequently P is unitarily equivalent

to U∗+. But U∗+ being a homogeneous operator, we have U∗+ is unitarily equivalent to φ−1
ζ

(U∗+)

(cf. [25]). Hence, we get that T =φ−1
ζ

(P ) is unitarily equivalent to U∗+.

Now we turn our attention from D to other finitely connected bounded planar domains

Ω whose boundary consists of n +1 Jordan analytic curves. We have seen that ifΩ is the unit
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disc, then ∂2

∂w∂w̄ logSD(w, w) = 4π2(SD(w, w))2, w ∈ D. On the other hand, for any bounded

simply connected regionΩ, the Sz̈ego kernel SΩ(z, w) is given by

SΩ(z, w) =
√

F ′(z)SD(F (z),F (w))
√

F ′(w),

where F :Ω 7→ D is any bi holomorphic map (cf. [7, Theorem 12.3]). Now using the Riemann

map and the transformation rules for the curvature (2.3), we conclude that

∂2

∂w∂w̄
logSΩ(w, w) = 4π2(SΩ(w, w))2, w ∈Ω. (2.5)

This shows that in the case of bounded simply connected domain with Jordan analytic bound-

ary, the operator M∗ on (H 2(Ω),d s) is an extremal operator, that is, KT (w̄) ≤ KM∗(w̄) for

every operator T ∈ B1(Ω∗) admittingΩ∗ as a spectral set.

On the other hand, if the region is not simply connected, then (2.5) fails. Indeed, for

such region, Suita (cf. [36]) has shown that

∂2

∂w∂w̄
logSΩ(w, w) > 4π2(SΩ(w, w))2, w ∈Ω. (2.6)

Or equivalently,

KM∗(z) <−4π2(SΩ∗(z, z))2, z ∈Ω∗, (2.7)

where M∗ is the adjoint of the multiplication by the coordinate function on the Hardy space

(H 2(Ω),d s). We therefore conclude that if Ω is not simply connected, then the operator M∗

on the Hardy space (H 2(Ω),d s) fails to be extremal.

We don’t know if there exists an operator T in B1(Ω∗) admitting Ω∗ as a spectral set for

which KT (w) = −4π2(SΩ∗(w, w))2, for all w ∈ Ω∗. The question of equality at just one fixed

but arbitrary point ζ̄ inΩ∗ was answered in [26, Theorem 2.1].

Definition 2.9 (Extremal operator at point). An operator T in B1(Ω∗) for whichΩ∗ is a spectral

set is called extremal at ζ̄ if KT (ζ̄) =−4π2(SΩ∗(ζ̄, ζ̄))2.

Representing the extremal operator T as the operator M∗ on a Hilbert space possessing

a reproducing kernel KT : Ω×Ω→ C, we have that the operator T is an extremal at ζ̄ if and

only if
∂2

∂w∂w̄
logKT (w, w)|w=ζ = 4π2SΩ(ζ,ζ)2. (2.8)

The operator M on the Hardy space (H 2(D),d s) is a pure subnormal operator with the

property: the spectrum of the minimal normal extension, designated the normal spectrum,

is contained in the boundary of the spectrum of the operator M . These properties determine
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the operator M uniquely up to unitary equivalence in the class of subnormal contractions.

The question of characterizing all pure subnormal operator with spectrum Ω and normal

spectrum contained in the boundary of Ω is more challenging if Ω is not simply connected.

The deep results of Abrahamse and Douglas (cf. [2, Theorem 11]) show that these are exactly

the bundle shifts, what is more, they are in one to one correspondence with the equivalence

classes of flat unitary bundles on the domainΩ. It follows that adjoint of a bundle shift of rank

1 lies in B1(Ω∗). Since bundle shifts are subnormal with spectrum equal to Ω, it follows that

Ω∗ is a spectral set for the adjoint of the bundle shift. In fact, the extremal operator at ζ̄, found

in [26], is the adjoint of a bundle shift of rank 1. Therefore, one may ask, following R. G. Dou-

glas, if the curvature KT (ζ̄) of an operator T in B1(Ω∗), admittingΩ∗ as a spectral set, equals

−4π2SΩ(ζ,ζ)2, then does it follow that T is necessarily unitarily equivalent to the extremal op-

erator at ζ̄ found in [26]? In the following chapter, we show that an extremal operator must

be uniquely determined within
{
[[T ∗]] : T is bundle shift of multiplicity 1 overΩ

}
, where [[·]]

denotes the unitary equivalence class.
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Chapter 3

Extremal operator and Uniqueness

3.1 Hardy space and bundle shift

Let Ω be a bounded, open and connected subset of the complex plane C. Assume that ∂Ω,

the boundary of Ω, consists of n + 1 analytic Jordan curves. Let ∂Ω1,∂Ω2, · · · ,∂Ωn+1 denote

the boundary components of Ω. We shall always let ∂Ωn+1 denote the curve whose interior

contains Ω. Set Ω∗ = {z̄ | z ∈Ω}, which is again a planar domain whose boundary consists of

n +1 analytic Jordan curves. Let p be a fixed but arbitrary point inΩ.

Let Eα be a flat unitary vector bundle overΩ induced by a characterα in Hom(π1(Ω),T).

Bundle shift TEα on the Hilbert space (H 2
Eα

,dωp ) can also be realized as a multiplication op-

erator on a certain subspace of the classical Hardy space H 2(D). Let π : D 7→ Ω be a holo-

morphic covering map satisfying π(0) = p. Let G denote the group of deck transformation

associated to the map π that is G = {A ∈ Aut(D) | π ◦A = π}. As G is isomorphic to the fun-

damental group π1(Ω) of Ω, every character α induce a unique element in Hom(G,T). By an

abuse of notation we will also denote it by α. A holomorphic function f on unit disc D sat-

isfying f ◦ A = α(A) f , for all A ∈ G , is called a modulus automorphic function of index α.

Now consider the following subspace of the Hardy space H 2(D) which consists of modulus

automorphic function of index α, namely

H 2(D,α) = { f ∈ H 2(D) | f ◦ A =α(A) f , for all A ∈G}.

Let Tα be the multiplication operator by the covering map π on the subspace H 2(D,α). Abra-

hamse and Douglas have shown in [2, Theorem 5] that the operator Tα is unitarily equivalent

to the bundle shift TEα on (H 2
Eα

,dωp ).

There is another way to realize the bundle shift as a multiplication operator M on a

Hilbert space of multivalued holomorphic function defined on Ω with the property that its

absolute value is single valued. A multivalued holomorphic function defined on Ω with the
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property that its absolute value is single valued is called a multiplicative function. Every mod-

ulus automorphic function f on D induce a multiplicative function on Ω, namely, f ◦π−1.

Converse is also true (see [40, Lemma 3.6]). We define the class H 2
α(Ω) consisting of multi-

plicative function in the following way:

H 2
α(Ω) := { f ◦π−1 | f ∈ H 2(D,α)}.

So the linear space H 2
α(Ω) is consisting of those multiple valued function h on Ω for

which |h| is single valued, |h|2 has a harmonic majorant onΩ and h is locally holomorphic in

the sense that each point w ∈ Ω has a neighbourhood Uw and a single valued holomorphic

function gw on Uw with the property |gw | = |h| on Uw (cf. [20, p.101]). Each function f in

H 2
α(Ω) admits a boundary value f̂ that is the limz→λ f (z) exists (almost everywhere relative

to dωp ) as z approaches λ ∈ ∂Ω through any non-tangential path in Ω. The map f 7→ f̂ is

an isomorphism between the linear spaces H 2
α(Ω) and its boundary values. Because of this

correspondence, for a function f ∈ H 2
α(Ω), we will use the same symbol f to denote both the

function f and its boundary value f̂ .

Since the covering map π lifts the harmonic measure dωp on ∂Ω at the point π(0) = p

to the linear Lebesgue measure on the unit circle T, It follows that H 2
α(Ω) endowed with the

norm

‖ f ‖2 =
∫
∂Ω

| f (z)|2dωp (z),

becomes a Hilbert space (cf. [20, p. 101].) We will denote it by
(
H 2
α(Ω),dωp

)
. In fact the map

f 7→ f ◦π−1 is a unitary map from H 2(D,α) onto
(
H 2
α(Ω),dωp

)
which intertwine the multipli-

cation by π on H 2(D,α) and the multiplication by coordinate function M on
(
H 2
α(Ω),dωp

)
.

It is well known that the harmonic measure dωp on ∂Ω at the point p is boundedly

mutually absolutely continuous w.r.t the arc length measure d s on ∂Ω. In fact we have

dωp (z) =− 1

2π

∂

∂ηz

(
g (z, p)

)
d s(z), z ∈ ∂Ω,

where g (z,ζ) denote the green function for the domain Ω at the point p and ∂
∂ηz

denote the

directional derivative along the outward normal direction (w.r.t positively oriented ∂Ω). In

this paper, instead of working with harmonic measure dωp on ∂Ω, we will work with arclength

measure d s on ∂Ω. This is the approach in Sarason [34]. So, we define the norm of a function

f in in H 2
α(Ω) by

‖ f ‖2
d s =

∫
∂Ω

| f (z)|2d s.
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Since the outward normal derivative of the Green’s function is negative on the boundary ∂Ω,

we have

dωp (z) = h2(z)d s(z), z ∈ ∂Ω, (3.1)

where h(z) is a positive continuous function on ∂Ω. We also see that

c2‖ f ‖2
d s ≤ ‖ f ‖2 ≤ c1‖ f ‖2

d s ,

where c1 and c2 are the supremum and the infimum of the function h on ∂Ω.

Hence it is clear that ‖ · ‖d s defines an equivalent norm on H 2
α(Ω), We let

(
H 2
α(Ω),d s

)
be

the Hilbert space which is the same as H 2
α(Ω) as a linear space but is given the new norm ‖·‖d s .

In fact, the identity map from
(
H 2
α(Ω),dωp

)
onto

(
H 2
α(Ω),d s

)
is invertible and intertwines the

corresponding multiplication operator by the coordinate function. It is easily verified that

the multiplication operator by coordinate function on
(
H 2
α(Ω),d s

)
is also a pure, rationally

cyclic subnormal operator with spectrum equal to Ω and normal spectrum contained in ∂Ω.

By a slight abuse of notation, we will denote the multiplication operator by the coordinate

function on
(
H 2
α(Ω),d s

)
also by Tα.

Using the characterization of all rationally cyclic subnormal operator with spectrum

equal to Ω and normal spectrum contained in ∂Ω given by Abrhamse and Douglas, we con-

clude that for every characterβ, the operator Tβ on
(
H 2
β

(Ω),d s
)

is unitarily equivalent to Tα on(
H 2
α(Ω),dωp

)
for someα. In the following section we will establish a bijective correspondence

(which respects the unitary equivalence class) between these two kinds of bundle shifts. The

following Lemma helps in establishing this bijection.

Lemma 3.1. If v be a positive continuous function on ∂Ω, then there exist a function F in

H∞
γ (Ω) for some character γ such that |F |2 = v almost everywhere (w.r.t arc length measure),

on ∂Ω. In fact F is invertible in the sense that there exist G in H∞
γ−1 (Ω) so that FG = 1 onΩ.

Proof. Since v is a positive continuous function on ∂Ω, it follows that log v is continuous on

∂Ω. Since the boundary ∂Ω of Ω consists of jordan analytic curves, the Dirichlet problem is

solvable with continuous boundary data. Now solving the Dirichlet problem with boundary

value 1
2 log v, we get a harmonic function u on Ω with continuous boundary value 1

2 log v. Let

u∗ be the multiple value conjugate harmonic function of u. Let’s denote the period of the

multiple valued conjugate harmonic function u∗ around the boundary component ∂Ω j by

c j =−
∫
∂Ω j

∂

∂ηz

(
u(z)

)
d sz , for j = 1,2, ...,n.

In the above equation negative sign appear since we have assumed that ∂Ω is positively ori-

ented, hence the different components of the boundary ∂Ω j , j = 1,2, . . . ,n, except the outer
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one are oriented in clockwise direction. Now consider the function F (z) defined by

F (z) = exp(u(z)+ i u∗(z)).

Observe that F is a multiplicative holomorphic function on Ω. Hence following [40, Lemma

3.6], we have a existence of modulus automorphic function f on unit disc D so that F = f ◦
π−1. We find the index of the modulus automorphy for the function f in the following way.

Around each boundary component ∂Ω j , along the anticlockwise direction, the value of F gets

changed by exp(i c j ) times its initial value. So, the index of f is determined by the n tuple of

numbers (γ1,γ2, ...,γn) given by,

γ j = exp(i c j ), j = 1,2, ...,n.

For each of these n tuple of numbers, there exist a homomorphism γ : π1(Ω) → T such that

these n tuple of numbers occur as a image of the n generator of the group π1(Ω) under the

map γ. Also we have |F (z)|2 = exp(2u(z)) = v(z), z ∈ ∂Ω. Since u is continuous onΩ, it follows

that |F (z)| is bounded onΩ. Hence F belongs to H∞
γ (Ω) with |F |2 = v on ∂Ω.

The function 1
v is also positive and continuous on ∂Ω, as before, there exists a function

G in H∞
δ

(Ω) with |G|2 = 1
v on ∂Ω. Since log 1

v =− log v , it easy to verify that index of G is exactly

(γ−1
1 ,γ−1

2 , ...,γ−1
n ) and hence δ is equal to γ−1. Evidently FG = 1 onΩ.

Now we establish the bijective correspondence which preserve the unitary equivalence

class, promised earlier. From (3.1), we know that the harmonic measure dωp is of the form

h2d s for some positive continuous function h on ∂Ω. Combining this with the preceding

Lemma, we see that there is a F in H∞
γ (Ω) with |F |2 = h2 on ∂Ω and a G in H∞

γ−1 (Ω) with

|G|2 = h−2 on ∂Ω. Now consider the map MF :
(
H 2
α(Ω),dωp (z)

) 7→ (
H 2
αγ(Ω),d s

)
, defined by the

equation

MF (g ) = F g , g ∈ (
H 2
α(Ω),dµζ(z)

)
.

Clearly, MF is a unitary operator and its inverse is the operator MG . The multiplication oper-

ator MF intertwines the corresponding operator of multiplication by the coordinate function

on the Hilbert spaces
(
H 2
α(Ω),dωp (z)

)
and

(
H 2
αγ(Ω),d s

)
establishing a bijective correspon-

dence of the unitary equivalence classes of bundle shifts. As a consequence we have the fol-

lowing theorem which was proved by Abrahamse and Douglas (see [2, Theorem 5 and 6]) with

the harmonic measure dωp instead of the arc length measure d s.

Theorem 3.2. The bundle shift Tα on
(
H 2
α(Ω),d s

)
is unitarily equivalent to the bundle shift Tβ

on
(
H 2
β

(Ω),d s
)

if and only if α=β.
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With the help of techniques used in proving Lemma 3.1, now we provide an alternative

proof of the following characterization theorem for pure, rationally cyclic, subnormal opera-

tor with spectrum equal to Ω and whose normal spectrum lies in ∂Ω, proved by Abrahamse

and Douglas (see [2, Theorem 11]). Let dωp be the harmonic measure on ∂Ω w.r.t a fixed but

arbitrary point p inΩ.

Theorem 3.3 (Abrahamse and Douglas). Every pure, rationally cyclic subnormal operator with

spectrum equal toΩ and whose normal spectrum lies in ∂Ω, is unitarily equivalent to a bundle

shift Tα on
(
H 2
α(Ω),dωp

)
for some character α.

Proof. Let T be a rationally cyclic, subnormal operator with spectrum equal toΩ and normal

spectrum of T lies in the boundary ofΩ. It is well known that each such T is unitarily equiva-

lent to the multiplication operator M on
(
H 2(∂Ω),dµ

)
for some measure µ, namely the scalar

spectral measure of the minimal normal extension N of T, supported on ∂Ω (see [11, p.51,

Theorem 5.2].) Here by
(
H 2(∂Ω),dµ

)
, we mean closure of Rat(Ω) in

(
L2(∂Ω),dµ

)
.

Since T is a rationally cyclic pure subnormal operator, the scalar spectral measure of the

minimal normal extension N is mutually absolutely continuous w.r.t harmonic measure dωp

(see [2, Proposition 3.3].) So we have dµ= hdωp , for some non negative measurable function

h in
(
L1(∂Ω),dωp

)
. It is also known that logh ∈ (

L1(∂Ω),dωp
)
. Otherwise,

(
H 2(∂Ω),dµ

)
would

be equal to
(
L2(∂Ω),dµ

)
(see [2, lemma 3.1]) and in that case T would be a normal operator.

Since the boundary ofΩ consists of analytic jordan curve, dirichlet problem is solvable.

So solving dirichlet problem with boundary value 1
2 logh, we will have a harmonic function u

on Ω so that boundary value of u equal to 1
2 logh a.e. For this u, we have a multiple valued

conjugate harmonic function v onΩ. Note that v has a period

pi =−
∫
∂Ωi

∂u

∂η
d s, i = 1,2, . . . ,n.

over the negatively oriented boundary component ∂Ωi . Now consider the multiplicative func-

tion F on Ω defined by F := exp(u + i v). Clearly F is a bounded, invertible multiplicative

function whose index is given by the following n tuple of number of unit modulus

(
exp(i p1),exp(i p2), ...,exp(i pn)

)=α (say).

Note that we also have, |F |2 = exp(2u) = h a.e. on ∂Ω. Consequently we have dµ = |F |2dωp ,

for some multiplicative function F of index α. Now consider linear map U :
(
H 2(∂Ω),dµ

) 7→(
H 2
α(Ω),dωp

)
defined by U ( f ) = F f . Clearly, U is an unitary map. The operator U being a

multiplication operator, it intertwines the corresponding multiplication operator. This gives

us that T is unitarily equivalent to the bundle shift Tα on
(
H 2
α(Ω),dωp

)
.
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It can be shown using the result of Abrahamse and Douglas (see [2, Theorem 3]) that for

any characterα, the adjoint of the rank 1 bundle shift Tα lies in B1(Ω∗). Since the bundle shifts

Tα is subnormal, it follows that the adjoint of the bundle shifts Tα admitsΩ∗ as a spectral set.

Consequently, we have an inequality for the curvature of the bundle shifts, namely,

KT ∗
α

(w) ≤−4π2(SΩ∗(w, w))2, w ∈Ω∗.

Given any fixed but arbitrary point ζ inΩ, in the following section, we recall the proof (slightly

different from the original proof given in [26] of the existence of a bundle shift Tα for which

equality occurs at ζ̄ in the curvature inequality. However, the main theorem of this section is

the “uniqueness” of such an operator.

Theorem 3.4 (Uniqueness). If the bundle shift Tα on
(
H 2
α(Ω),d s

)
and the bundle shift Tβ on(

H 2
β

(Ω),d s
)

are extremal at the point ζ̄, that is, if they satisfy

KT ∗
α

(ζ̄) =−4π2(SΩ∗(ζ̄, ζ̄))2 =KT ∗
β

(ζ̄),

then the bundle shifts Tα and Tβ are unitarily equivalent, which is the same as α=β.

The Hardy space
(
H 2(Ω),dωp

)
consists of holomorphic function on Ω such that | f |2

has a harmonic majorant on Ω. Each f in
(
H 2(Ω),dωp

)
has a non tangential boundary value

almost everywhere. In the usual way
(
H 2(Ω),dωp

)
is identified with a closed subspace of

L2(∂Ω,dωp ) (see [33, Theorem 3.2]). Let λ be a positive continuous function on ∂Ω. As the

measure λd s and the harmonic measure dωp on ∂Ω are boundedly mutually absolutely con-

tinuous one can define an equivalent norm on
(
H 2(Ω) in the following way

‖ f ‖2
λd s =

∫
∂Ω

| f (z)|2λ(z)d s(z).

Let
(
H 2(Ω),λd s

)
denote the linear space H 2(Ω) endowed with the norm λd s. Since the har-

monic measure dωp is boundedly mutually absolutely continuous w.r.t the arc length mea-

sure d s and λ is a positive continuous function on ∂Ω, it follows that the ‖ · ‖λd s defines an

equivalent norm on
(
H 2(Ω),dωp

)
. So, the identity map i d :

(
H 2(Ω),dωp

) 7→ (
H 2(Ω),λd s

)
is

an invertible map intertwining the associated multiplication operator M . Thus
(
H 2(Ω),λd s

)
acquires the structure of a Hilbert space and the operator M on it is rationally cyclic, pure

subnormal, its spectrum is equal to Ω and finally its normal spectrum is equal to ∂Ω. Conse-

quently, the operator M on
(
H 2(Ω),λd s

)
must be unitarily equivalent to the bundle shift Tα

on
(
H 2
α(Ω),d s

)
for some character α. Now, we compute the character α.

Sinceλ is a positive continuous function on ∂Ω, using Lemma 3.1, we have the existence

of a character α and a function F in H∞
α (Ω) satisfying |F |2 = λ on ∂Ω. The function F is also
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invertible in the sense that there exist a function G in H∞
α−1 (Ω) such that FG = 1 on Ω. It is

straightforward to verify that the linear map MF :
(
H 2(Ω),λd s

) 7→ (
H 2
α(Ω),d s

)
defined by

MF (g ) = F g , g ∈ (
H 2(Ω),λd s

)
is unitary. Also MF being a multiplication operator, intertwines the corresponding multiplica-

tion operator by the coordinate function on the respective Hilbert spaces. From Lemma 3.1,

it is clear that the character α is determined by the following n tuple of numbers:

c j (λ) =−
∫
∂Ω j

∂

∂ηz

(
uλ(z)

)
d s(z), for j = 1,2, ...,n, (3.2)

where uλ is the harmonic function on Ω with continuous boundary value 1
2 logλ. Using this

information along with the Theorem 3.2, we deduce the following Lemma which describe the

unitary equivalence class of the multiplication operator M on
(
H 2(Ω),λd s

)
.

Lemma 3.5. Let λ,µ be two positive continuous function on ∂Ω. Then the operators M on the

Hilbert spaces
(
H 2(Ω),λd s

)
and

(
H 2(Ω),µd s

)
are unitarily equivalent if and only if

exp
(
i c j (λ)

)= exp
(
i c j (µ)

)
, j = 1, . . . ,n.

Remark 3.6. The case when λ(z) is a positive constant on each of the boundary component

∂Ωi is of special interest (cf. [10]). Let us assume

λ(z) =
exp(2λ j ), z ∈ ∂Ω j , j = 1,2, . . . ,n,

1, z ∈ ∂Ωn+1

(3.3)

where the constants λ j are real numbers. In this case, uλ(z), the harmonic extension of
1
2 logλ(z) equals to λ1ω1(z)+·· ·+λnωn(z), where ω j (z) is the harmonic function onΩwhose

boundary value on ∂Ω j is 1 and it is 0 on every other boundary component. Recall that the

period matrix ((pi , j )) associated to the domainΩ, where is given by the formula

pi , j =−
∫
∂Ωi

∂

∂ηz
ω j (z)d s.

It is well known that the period matrix P = ((pi , j )) is positive definite (cf. [30, page 39]). Now if

we denote the column vector (λ1, . . . ,λn)t by λ̂, then it is easy to see that ci (λ) =∑n
j=1 pi , jλ j =

(P λ̂)i .

So, for weight functions λ (and µ) of the form (3.3), an equivalent form of the Lemma

3.5 merits a special mention:

Let λ and µ be two positive continuous function on the boundary of Ω, of the above

type, then the operators M on the Hilbert spaces
(
H 2(Ω),λd s

)
and

(
H 2(Ω),µd s

)
are unitarily

equivalent if and only if P (λ̂− µ̂) ∈Zn .
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It also follows from a result of Abrahamse (see [1, Proposition 1.15]) that given a charac-

ter α there exist a invertible element F in H∞
α (Ω) such that

|F (z)|2 =
1, if z ∈ ∂Ωn+1

p j , if z ∈ ∂Ω j , j = 1, · · · ,n,

where p j are positive constant. Thus we have proved the following theorem.

Theorem 3.7. Given any character α, there exists a positive continuous function λ defined on

∂Ω such that the operator M on
(
H 2(Ω),λd s

)
is unitarily equivalent to the bundle shift Tα on(

H 2
α(Ω),d s

)
.

3.2 Weighted Kernel and Extremal Operator at a fixed point

Let λ be a positive continuous function on ∂Ω. Since
(
H 2(Ω),dωp

)
is a reproducing kernel

Hilbert space and the norm on
(
H 2(Ω),dωp

)
is equivalent to the norm on

(
H 2(Ω),λd s

)
, it

follows that
(
H 2(Ω),λd s

)
is also a reproducing kernel Hilbert space. Let K (λ)(z, w) denote the

kernel function for
(
H 2(Ω),λd s

)
.

The case λ ≡ 1 gives us the Sz̈ego kernel S(z, w) for the domain Ω. Associated to the

Sz̈ego kernel, there exists a conjugate kernel L(z, w), called the Garabedian kernel, which is

related to the Sz̈eego kernel via the following identity.

S(z, w)d s = 1

i
L(z, w)d z, w ∈Ω and z ∈ ∂Ω.

We recall several well known properties of these two kernels when ∂Ω consists of jordan ana-

lytic curves. For each fixed w inΩ, the function Sw (z) is holomorphic in a neighbourhood of

Ω and Lw (z) is holomorphic in a neighbourhood of Ω− {w} with a simple pole at w. Lw (z) is

non vanishing on Ω− {w}. The function Sw (z) is non vanishing on ∂Ω and has exactly n zero

inΩ (cf. [7, Theorem 13.1]). In [29, Theorem 1] Nehari has extended these result for the kernel

K (λ)(z, w).

Theorem 3.8 (Nehari). Let Ω be a bounded domain in the complex plane, whose boundary

consists of n +1 analytic jordan curve and let λ be a positive continuous function on ∂Ω. Then

there exist two analytic function K (λ)(z, w) and L(λ)(z, w) with the following properties: for each

fixed w inΩ, the function K (λ)
w (z) and L(λ)

w (z)− (2π(z −w))−1 are holomorphic inΩ; |K (λ)
w (z)| is

continuous onΩ and |L(λ)
w (z)| is continuous inΩ−Cε, where Cε denotes a small open disc about

w; K (λ)
w (z) and L(λ)

w (z) are connected by the identity

K (λ)
w (z)λ(z)d s = 1

i
L(λ)

w (z)d z, w ∈Ω and z ∈ ∂Ω. (3.4)

These properties determine both functions uniquely.
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From (3.4), we have that 1
i K λ

w (z)Lλw (z)d z ≥ 0. The boundary ∂Ω consists of Jordan ana-

lytic curves, therefore from the Schwartz reflection principle, it follows that the function K λ
w

and Lλw − (2π(z −w))−1 are holomorphic in a neighbourhood ofΩ.

We have shown that the operator M on
(
H 2(Ω),λd s

)
is unitarily equivalent to a bundle

shift of rank 1. Consequently the adjoint operator M∗ lies in B1(Ω∗) admittingΩ∗ as a spectral

set from which a curvature inequality follows:

KT (w) ≤−4π2(SΩ∗(w, w))2, w ∈Ω∗.

Or equivalently,

∂2

∂w∂w̄
logK (λ)(w, w) ≥ 4π2(SΩ(w, w))2, w ∈Ω.

Fix a point ζ in Ω. The following lemma provides a criterion for the adjoint operator M∗ on(
H 2(Ω),λd s

)
to be extremal at ζ̄, that is,

∂2

∂w∂w̄
logK (λ)(w, w) |w=ζ = 4π2(SΩ(ζ,ζ))2.

Lemma 3.9. The operator M∗ on the Hilbert space
(
H 2(Ω),λd s

)
is extremal at ζ̄ if and only if

L(λ)
ζ

(z) and the Sz̈ego kernel at ζ, namely Sζ(z) have the same set of zeros inΩ.

Proof. Consider the closed convex set M1 in
(
H 2(Ω),λ(z)d s

)
defined by

M1 := { f ∈ (
H 2(Ω),λ(z)d s

)
: f (ζ) = 0, f ′(ζ) = 1}.

Now consider the extremal problem is

inf {‖ f ‖2 : f ∈ M1}. (3.5)

Since M1 is a closed convex set, there exist a unique function F in M1 which solve the extremal

problem. Let H1 be the closed subspace of
(
H 2(Ω),λd s

)
defined by

H1 := { f ∈ (
H 2(Ω),λ(z)d s

)
: f (ζ) = 0, f ′(ζ) = 0} = (

Span{K(λ)
ζ

, ∂̄K(λ)
ζ

}
)⊥.

Since f + g ∈ M1, whenever f ∈ M1 and g ∈ H1, It is evident that the unique function F which

solves the extremal problem must belong to H⊥
1 . Let F = c1K (λ)

ζ
+ c2∂̄K (λ)

ζ
be the solution of

the extremal problem. Since F ∈ M1, we have

c1K (λ)(ζ,ζ)+ c2∂̄K (λ)(ζ,ζ) = 0,

c1∂K (λ)(ζ,ζ)+ c2∂̄∂K (λ)(ζ,ζ) = 1.
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Let G denotes the Grammian matrix for the vectors {K (λ)
ζ

, ∂̄K (λ)
ζ

}, that is,

G =
(

K (λ)(ζ,ζ) ∂̄K (λ)(ζ,ζ)

∂K (λ)(ζ,ζ) ∂̄∂K (λ)(ζ,ζ)

)

and c denotes the column vector (c1,c2)tr . we have Gc = (0,1)tr = e2. Thus c =G−1e2. Conse-

quently, we have that,

‖F‖2 = ‖c1K (λ)
ζ

+ c2∂̄K (λ)
ζ

‖2

= 〈Gc,c〉
= 〈G−1e2,e2〉

=
{

K (λ)(ζ,ζ)
( ∂2

∂w∂w̄
logK (λ)(w, w)|w=ζ

)}−1
.

Now consider the function g in
(
H 2(Ω),λ(z)d s

)
defined by

g (z) :=
K (λ)
ζ

(z)Fζ(z)

2πS(ζ,ζ)K (λ)(ζ,ζ)
, z ∈Ω,

where Fζ(z) = Sζ(z)
Lζ(z) denote the Ahlfors map for the domain Ω at the point ζ (see [7, Theorem

13.1]). Using the reproducing property for the kernel function K (λ) and the fact that |Fζ(z)| ≡ 1

on ∂Ω, it is straightforward to verify that

‖g‖2
λd s =

(
K (λ)(ζ,ζ)4π2S(ζ,ζ)2

)−1
.

Since Fζ(ζ) = 0 and F ′
ζ
(ζ) = 2πS(ζ,ζ), it follows that g ∈ M1. Consequently we have,

(
K (λ)(ζ,ζ)4π2S(ζ,ζ)2

)−1
≥

{
K (λ)(ζ,ζ)

( ∂2

∂w∂w̄
logK (λ)(w, w)|w=ζ

)}−1
.

Or equivalently,

∂2

∂w∂w̄
logK (λ)(w, w) |w=ζ≥ 4π2(SΩ(ζ,ζ))2.

So equality holds if and only if g solve the extremal problem in (3.5) if and only if g is or-

thogonal to the subspace H1. Hence, we conclude that the operator M∗ on the Hilbert space(
H 2(Ω),λ(z)d s

)
is extremal at ζ̄ if and only if g is orthogonal to the subspace H1. Now consider
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the following integral

I f =
∫
∂Ω

f (z)K (λ)
ζ

(z)Fζ(z)λ(z)d s

= 1

i

∫
∂Ω

f (z)Fζ(z)L(λ)
ζ

(z)d z (Using the identity 3.4)

= 2π

2πi

∫
∂Ω

f (z)

Fζ(z)
L(λ)
ζ

(z)d z

= 1

2πi

∫
∂Ω

f (z)L(λ)
ζ

(z)
(
2πLζ(z)

)
Sζ(z)

d z.

Since H1 ∩Rat(Ω) is dense in H1, g is orthogonal to H1 if and only if I f vanishes for all f ∈
H1 ∩Rat(Ω). Observe that we have L(λ)

ζ
(z)Lζ(z) is holomorphic in Ω− {ζ} with a pole of order

2 at ζ. As ∂Ω consists of Jordan analytic curve, both the function L(λ)
( ζ)(z) and Lζ(z) are also

holomorphic in a neighbourhood of ∂Ω. It is known that Lζ(z) has no zero inΩ− {ζ} and Sζ(z)

has exactly n zero say a1, a2, ..., an inΩ, (cf. [7, ]).

Now we claim that I f vanishes for all f ∈ H1 ∩Rat(Ω) if and only if the set of zeros of the

function L(λ)
ζ

(z) inΩ is {a1, a2, . . . , an}.

First if we assume that L(λ)
ζ

(z) has {a1, a2, . . . , an} as the zero set inΩ, then the integrand

in I f is holomorphic in a neighbourhood ofΩ for every f in H1 ∩Rat(Ω) and consequently I f

vanishes for every f in H1 ∩Rat(Ω). Conversely if L(λ)
ζ

(z) doesn’t vanish at one of a j ’s, without

loss of generality, say at a1, then the function

f (z) = (z −ζ)2
n∏

k=2
(z −ak )

is in H1 ∩Rat(Ω). Observe that the integrand in I f , with this choice of the function f , is holo-

morphic in a neighbourhood ofΩ except at the point a1, where it has a simple pole. So by the

Residue theorem the integral I f equals the residue of the integrand at a1, which is not zero

completing the proof.

3.2.1 Existence of Extremal operator

We provide below two different descriptions of an extremal operator at ζ̄ using the criterion

obtained in Lemma 3.9 Let a1, a2, ..., an be the zeros of the Sz̈ego Sζ(z) inΩ.

Realization of the extremal operator at ζ̄

Consider the function λ on ∂Ω defined by

λ(z) :=
n∏

k=1
|z −ak |2, z ∈ ∂Ω.



36 3. Extremal operator and Uniqueness

Then, for z ∈ ∂Ω, we have

Sζ(z)
n∏

j=1
(z̄ − ā j )(ζ−a j )

λ(z)d s =

n∏
k=1

(z −ak )

n∏
k=1

(ζ−ak )
Sζ(z)d s

= 1

i

n∏
k=1

(z −ak )

n∏
k=1

(ζ−ak )
Lζ(z)d z

Note that the function Sζ(z)
( n∏

j=1
(z−a j )(ζ̄− ā j )

)−1
is holomorphic in a neighborhood ofΩ and

the function Lζ(z)
( n∏

k=1
(z−ak )

)( n∏
k=1

(ζ−ak )
)−1

is a meromorphic in a neighbourhood ofΩwith

a simple pole at ζ. Hence using the uniqueness portion of the Theorem (3.8), we get

K (λ)
ζ

(z) = Sζ(z)
n∏

j=1
(z −a j )(ζ̄− ā j )

, z ∈Ω and L(λ)
ζ

(z) =

n∏
k=1

(z −ak )

n∏
k=1

(ζ−ak )
Lζ(z), z ∈Ω− {ζ}.

Clearly, {a1, a2, ..., an} is the zero set of the function L(λ)
ζ

(z). So, the adjoint operator M∗ on(
H 2(Ω),λ(z)d s

)
is an extremal operator at ζ̄.

A second realization of the extremal operator at ζ̄ :

This realization of the extremal operator was obtained earlier in [26]. Consider the measure

λ(z)d s = |Sζ(z)|2
S(ζ,ζ)

d s, z ∈ ∂Ω,

on the boundary ∂Ω. Using the reproducing property of the Sz̈ego kernel, it is easy to verify

that 〈
f ,1

〉(
H 2(Ω),λd s

) = f (ζ).

This gives us K (λ)
ζ

(z) = 1 for all z ∈Ω. So we have

λ(z)d s = Sζ(z)

S(ζ,ζ)
Sζ(z)d s, z ∈ ∂Ω

= 1

i

Sζ(z)

S(ζ,ζ)
Lζ(z)d z, z ∈ ∂Ω.



3.2. Weighted Kernel and Extremal Operator at a fixed point 37

Now the function Sζ(z)Lζ(z)
(
S(ζ,ζ)

)−1 is a meromorphic function in a neighbourhood of Ω

with a simple pole at ζ. Again, using the uniqueness guaranteed in Theorem (3.8), we get

L(λ)
ζ

(z) = Sζ(z)Lζ(z)
(
S(ζ,ζ)

)−1, z ∈Ω− {ζ}.

Again, the zero set of the function L(λ)
ζ

(z) is equal to the set {a1, a2, ..., an}. So the operator M∗

on
(
H 2(Ω),λ(z)d s

)
is an extremal operator at ζ̄.

We shall prove that the any extremal operator which is also the adjoint of a bundle shift

is uniquely determined up to unitary equivalence. An amusing consequence of this unique-

ness is that the two realizations of the extremal operators given above must coincide up to

unitary equivalence.

3.2.2 Index of the Blaschke product

To facilitate the proof of the uniqueness, we need to recall basic properties of multiplicative

Blaschke product onΩ and its index of automorphy. This is also going to be a crucial ingredi-

ent in determining the character α of the extremal operator at ζ̄.

Let g (z, a) be the Green’s function for the domain Ω, whose critical point is a ∈Ω. The

multiplicative Blaschke factor with zero at a, is defined as follows

Ba(z) = exp(−g (z, a)− i g∗(z, a)), for all z ∈Ω,

where g∗(z, a) is the multivalued conjugate of the Green’s function g (z, a), which is harmonic

onΩ− {a}. So, Ba(z) is a multiplicative function onΩ, which vanishes only at the point a with

multiplicity 1 and on ∂Ω its absolute value is identically 1. Note that periods of the conjugate

harmonic function g∗(z, a) around the boundary component ∂Ω j is equal to

p j (a) =−
∫
∂Ω j

∂

∂ηz

(
g (z, a)

)
d sz , for j = 1,2, ...,n.

The negative sign appearing in the equation for the periods is a result of the assumption that

∂Ω is positively oriented, that is, the boundary ∂Ω j , j = 1,2, . . . ,n, except the outer one are

oriented in clockwise direction.

Since the Blaschke factor Ba(z) is multiplicative function onΩ, therefore it is induced by

a modulus automorphic function on unit disc, say bα, for some α. The character α uniquely

determines n-tuple of complex number of unit modulus. These are the image under α of the

generators of the group G of Deck transformations relative to the covering map π : D→ Ω.

This n - tuple, called the index of the Blaschke factor Ba(z), is of the form

{exp(−i p1(a)),exp(−i p2(a), · · · ,exp(−i pn(a))}.
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We recall bellow the well known relationship of the period p j (a) to the harmonic measure

ω j (z) of the boundary component ∂Ω j , namely,

ω j (a) =− 1

2π

∫
∂Ω j

∂

∂ηz

(
g (z, a)

)
d sz = 1

2π
p j (a), for j = 1,2, ...,n,

where the harmonic measureω j (z) is the function which is harmonic inΩ and has the bound-

ary values 1 on ∂Ω j and is 0 on all the other boundary components. Hence the index of the

Blaschke factor Ba(z) is

ind(Ba(z)) = {exp(−2πiω1(a)),exp(−2πiω2(a), · · · ,exp(−2πiωn(a))}.

For each of these n tuple of numbers, there exist a homomorphism α : G →T such that these

n tuple of numbers occur as the image of the n generator of the group G under the map α

completing the bijective correspondence between the character α and the index. It follows

that the function Ba := bα ◦π−1 lies in H∞
α .

The index of the Blaschke product B(z) =
m∏

k=1
Bak (z), ak ∈Ω, is equal to

ind(B(z)) =
{

exp
(−2πi

m∑
k=1

ω1(ak )
)
, · · · ,exp

(−2πi
m∑

k=1
ωn(ak )

)}
. (3.6)

3.2.3 Zeros of the Sz̈ego kernel

Fixing ζ in Ω, which is n + 1 - connected, as pointed out earlier, the Sz̈ego kernel Sζ(z) has

exactly n zeros (counting multiplicity) in Ω. Let a1, a2, . . . , an be the zeros of Sζ(z). Hence the

Ahlfors function Fζ(z) at the point ζ has exactly n +1 zeros in Ω, namely ζ, a1, a2, . . . , an . Now

an interesting relation between the points a1, . . . , an and ζ becomes evident.

First consider the Blaschke product B(z) = Bζ(z).
n∏

k=1
Bak (z). The index of the Blaschke

product B(z), using (3.6), is easily seen to be of the form

β= (β1,β2, · · · ,βn), where β j =
{

exp
(
−2πi

(
ω j (ζ)+

n∑
k=1

ω j (ak )
))}

for j = 1,2, . . . ,n.

The Ahlfors function Fζ(z) is in H∞(Ω) and it is holomorphic in a neighbourhood of Ω̄

as long as the boundary ∂Ω is analytic. Therefore in the inner outer factorization of Fζ(z),

there is no singular inner function and it follows that

|Fζ(z)| = |B(z)||ψ(z)|, z ∈Ω,

where ψ(z) is a multiplicative outer function of index

β−1 = (β−1
1 ,β−1

2 , · · · ,β−1
n ).
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Now consider the linear map L :
(
H 2(Ω),d s(z)

) 7→ (
H 2
β−1 (Ω),d s

)
, defined by

L f =ψ f , f ∈ (
H 2(Ω),d s(z)

)
.

Note that ψ(z) is outer and it is bounded in absolute value (since Fζ(z) is bounded) onΩ. It is

straightforward to verify that L is a unitary operator. Also, since L is a multiplication operator,

it intertwines any two multiplication operators on the respective Hilbert spaces.

As a corollary of Theorem 3.2, we must have β−1 = (1,1, · · · ,1). This implies

exp
(
−2πi

(
ω j (ζ)+

n∑
k=1

ω j (ak )
))= 1, j = 1,2, . . . ,n, (3.7)

relating the point ζ to the zeros a1, a2, · · · , an of the Sz̈ego kernel Sζ(z).

3.2.4 Uniqueness of the Extremal operator

Assume that for a positive continuous function λ on ∂Ω, the operator M∗ on the Hilbert

space
(
H 2(Ω),λ(z)d s

)
is extremal at ζ̄. The function K (λ)

ζ
(z) is analytic in a neighborhood

of Ω and the conjugate kernel L(λ)
ζ

(z) is meromorphic in a neighborhood of Ω with a simple

pole only at the point ζ. Also from Lemma 3.9, we have that the zero set of L(λ)
ζ

(z) is the the

set {a1, a2, ..., an}, where {a1, a2, ..., an} are the zeros of Sζ(z) inΩ. We have, using the equation

(3.4), that

|K (λ)
ζ

(z)|2λ(z)d s = 1

i
K (λ)
ζ

(z)L(λ)
ζ

(z)d z, z ∈ ∂Ω.

An application of the Generalized Argument Principle shows that the total number of zeros of

K (λ)
ζ

(z) and L(λ)
ζ

(z) inΩ, where a zero on the boundary is counted as 1
2 , is equal to n. Hence it

follows that a1, a2, ..., an are the all zeros of L(λ)
ζ

(z) inΩ and K (λ)
ζ

(z) has no zero inΩ.

Nehari [29, Theorem 4] has shown that the meromorphic function

R(z) =
K (λ)
ζ

(z)

L(λ)
ζ

(z)
, z ∈Ω

with exactly one zero at ζ and poles exactly at a1, a2, ..., an , solves the extremal problem

sup{| f ′(ζ)| : f ∈ Bλ},

where Bλ denotes the class of meromorphic function onΩ. Each f in Bλ is required to vanish

at ζ and it is assumed that the set of poles of f is a subset of {a1, a2, ..., an}. The radial limit of

the functions f at z0 ∈ ∂Ω, from withinΩ, in the class Bλ are uniformly bounded:

limsup
z→z0

| f (z)| ≤ 1

λ(z0)
, z0 ∈ ∂Ω.
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The proof includes the verification

|R(z)| = 1

λ(z)
, z ∈ ∂Ω.

Now consider the multiplicative function G onΩ defined by

G(z) = Bζ(z)

R(z)
n∏

j=1
Ba j (z)

, z ∈Ω.

So, G is a multiplicative function in a neighbourhood of Ω. Also by construction |G| has no

zero in Ω. Using the inner outer factorization for multiplicative functions (cf. [41, Theorem

1]), we see that G is a bounded multiplicative outer function. Also note that

|G(z)| =λ(z), z ∈ ∂Ω.

The index of G is given by{
exp

(
2πi

(−ω1(ζ)+
n∑

j=1
ω1(a j )

))
, ...,exp

(
2πi

(−ωn(ζ)+
n∑

j=1
ωn(a j )

))}
.

Using equation (3.7), we infer that the index of G(z) must be equal to{
exp

(
−4πiω1(ζ)

)
, ...,exp

(
−4πiωn(ζ)

)}
.

The function G is outer and hence the function F :=p
G is well defined. It is a bounded

multiplicative outer function with |F (z)|2 =λ(z) for all z in ∂Ω. Let’s denote the index of F by{
exp

(
−2πiω1(ζ)

)
, ...,exp

(
−2πiωn(ζ)

)}
.

Now consider the linear map V :
(
H 2(Ω),λ(z) d s

) 7→ (
H 2
α(Ω),d s

)
defined by

V f = F f , f ∈ (
H 2(Ω),λ(z) d s

)
.

It is easily verified that V is a unitary multiplication operator, which intertwines the corre-

sponding multiplication operators on the respective Hilbert spaces. Hence the character α

for the bundle shift Tα on
(
H 2
α(Ω),d s

)
, which is extremal at ζ̄, is uniquely determined by the

following n tuple of complex number of unit modulus:

{
exp

(−2πiω1(ζ)
)
, ...,exp

(−2πiωn(ζ)
)}

= {
exp

(
2πi (1−ω1(ζ))

)
, ...,exp

(
2πi (1−ωn(ζ))

)}
.
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Hence if the adjoint of a bundle shift (upto unitary equivalence) is extremal at ζ̄, then it is

uniquely determined. This completes the proof of the Theorem 3.4.

Since the group of the Deck transformations G for the covering π : D→ Ω is isomor-

phic to the free group on n generators, any character α of the group G is unambiguously

determined, up to a permutation in the choice of generators for the group G , by the n-tuple

{x := (x1, x2, · · · , xn) : x1, . . . , xn ∈ [0,1)}, namely,

α(gk ) = exp(2πi xk ), xk ∈ [0,1)1 ≤ k ≤ n,

where gk , 1 ≤ k ≤ n, are generators of the group G . The unitary equivalence class of the bundle

shifts Tα of rank 1 is therefore determined by the n-tuple x in [0,1)n corresponding to the

character α.

The character corresponding to the n-tuple
(
(1−ω1(ζ)), (1−ω2(ζ)), · · · , (1−ωn(ζ))

)
de-

fines the bundle shift which is extremal at ζ̄. Let φ :Ω→ [0,1)n be the induced map, that is,

φ(ζ) =
(
(1−ω1(ζ)), (1−ω2(ζ)), · · · , (1−ωn(ζ))

)
.

Suita [36] shows that the map φ is not onto since (0, . . . ,0), which corresponds to the

operator M∗ on the usual Hardy space, cannot be in its range. However, we show below that

many other bundle shifts are missing from the range of the map φ, when n ≥ 2.

Let ωn+1(z) be the harmonic measure for the outer boundary component ∂Ωn+1. Thus

ωn+1 is the harmonic function on Ω which is 1 on ∂Ωn+1 and is 0 on all the other boundary

components. We have

n+1∑
j=1

ω j ≡ 1 and 0 <ωn+1(z) < 1, z ∈Ω,

therefore

(n −1) <
n∑

j=1

(
1−ω j (ζ)

)< n.

From this, for n ≥ 2, it follows that the set of extremal operators does not include the

adjoint of many of the bundle shifts. For instance, if the index of a bundle shift is (x1, . . . , xn)

in [0,1)n is such that x1+·· ·+xn < n−1, then it cannot be an extremal operator at any ζ̄, ζ ∈Ω.

3.3 The special case of the Annulus

LetΩ be an Annulur domain A(0;R,1) with inner radius R, 0 < R < 1, and outer radius 1. In this

case we have a explicit expression for the harmonic measure corresponding to the boundary
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component ∂Ω1, namely,

ω1(z) = log |z|
logR

.

So for a fixed point ζ in A(0;R,1), the character of the unique bundle shift which happens to

be an extremal operator at ζ̄ is determined by the number

α(ζ) = exp
(
2πi

(
1−ω1(ζ)

))
.

From this expression for the index, it is clear, in the case of an Annulur domain A(0;R,1), that

the adjoint of every bundle shift except the trivial one, is an extremal operator at some point

ζ̄ in Ω∗. In fact this is true of any doubly connected bounded domain Ω with Jordan analytic

boundary since for such domain we have ω1(Ω) = (0,1), where ω1 is the harmonic measure

corresponding to the inner boundary component ∂Ω1.

We now give a different proof of the Theorem 3.4 in the case of Ω = A(0;R,1). In the

course of this proof we see the effect of the weights on the zeros of the weighted Hardy kernels

K (α). This question was raised in [24].

For a fixed real number α, Consider the measure µαd s on the boundary of the Annulus,

where the function µα is defined by

µα(z) =
1, if |z| = 1,

R2α, |z| = R.

It is straightforward to verify that the function { fn(z)}n∈Z defined by

fn(z) = zn√
2π(1+R2α+2n+1)

, n ∈Z,

forms an orthonormal basis for the Hilbert space
(
H 2(Ω),µαd s

)
. The function

K (α)(z, w) := 1

2π

∑
n∈Z

(zw̄)n

1+R2α+2n+1
, z, w ∈Ω,

is uniformly convergent on compact subsets ofΩ. Hence K (α) is the reproducing kernel of the

Hilbert space
(
H 2(Ω),µαd s

)
. For each fixed w in Ω, the kernel function K (α)(z, w) is defined

on Ω. However, it extends analytically to a larger domain. To describe this extension, recall

that the Jordan Kronecker function, introduced by Venkatachaliengar (cf. [39, p.37]), is given

by the formula

f (b, t ) = ∑
k∈Z

t n

1−bR2n
.
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This series converges for R2 < |t | < 1, and for all b 6= R2k ,k ∈ Z. Venkatachaliengar, using Ra-

manujan’s 1ψ1 summation formula, has established the following identity (cf. [39, p. 40])

f (b, t ) =

∞∏
j=0

(1−btR2 j )
∞∏

j=0
(1− R2 j+2

bt )
∞∏

j=0
(1−R2 j+2)

∞∏
j=0

(1−R2 j+2)

∞∏
j=0

(1− tR2 j )
∞∏

j=0
(1− R2 j+2

t )
∞∏

j=0
(1−bR2 j )

∞∏
j=0

(1− R2 j+2

b )
. (3.8)

This extends the definition of f (b, t ), as a meromorphic function, to all of the complex plane

with a simple poles at b = R2k , t = R2k ; k ∈ Z. For an arbitrary but fixed point w in Ω, since

the function f (−R2α+1, zw̄) coincides with 2πK (α)(z, w) for all z inΩ, and f is a meromorphic

on the entire complex plane, it follows that K (α)
w also extends to all of C as a meromorphic

function. The poles of K (α)
w are exactly at R2k

w̄ ,k ∈Z. The zeros of the kernel function K (α)
w (z) in

Ω can also be computed using the equation 3.8. The zeros (b, t ) of the function f must satisfy

one of the following identities

bt = R−2 j , j = 0,1,2, . . . or, bt = R2 j+2, j = 0,1,2, . . .

For example, when α= 0, the kernel K (α)(z, w) is the Sz̈ego kernel S(z, w). It follows that if w

is a fixed but arbitrary point inΩ, then the zero set of the Sz̈ego kernel function Sw (z) is {− R
w̄ }.

The operator M on the Hilbert space
(
H 2(Ω),µαd s

)
is a bilateral weighted shift with

weight sequence

ω(α)
n =

√
1+R2α+2n+3

1+R2α+2n+1
, n ∈Z.

The identity

ω(α+1)
n =ω(α)

n+1, n ∈Z,

makes the operators M on
(
H 2(Ω),µαd s

)
and

(
H 2(Ω),µα+1d s

)
unitarily equivalent. Thus

there is a natural map from the unitary equivalence classes of these bi-lateral shifts onto [0,1).

In the case of the annulus A(0;R,1), we find that uµα and c1(µα), as defined in equation (3.2),

are equal to α log |z| and 2πα respectively. Applying Lemma 3.5, we see that the operators M

on
(
H 2(Ω),µαd s

)
and

(
H 2(Ω),µα+1d s

)
are unitarily equivalent if and only if α−β is an in-

teger. Thus we have a bijective correspondence between the unitary equivalence classes of

these bi-lateral shifts and [0,1), and we may assume without loss of generality that α ∈ [0,1).

For each α ∈ [0,1), the operator M on
(
H 2(Ω),µαd s

)
is unitarily equivalent to the bun-

dle shift Tβ on
(
H 2
β

(Ω),d s
)
, where the character β is determined by the unimodular scalar

exp(2πiα).
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Now Fix a point ζ inΩ. It is known that Sζ(z), the Sz̈ego kernel at ζ for the domainΩ has

exactly one zero at −R
ζ̄

. The existence of a conjugate kernel L(α)(z, w) is established in [29].

Then using the characterization for the extremal operator at ζ̄, it follows that the operator M∗

on
(
H 2(Ω),µαd s

)
is extremal at ζ̄ if and only if L(α)

ζ
(−R

ζ̄
) = 0. From the identity

zL(α)(z, w) = K (α)( 1
z , w̄)

proved in [24, p.1118], and recalling that K (α)
ζ̄

(− ζ̄
R ) = ∑

k∈Z
(− |ζ|2

R )n

1+R2α+2n+1 , we conclude: The operator

M∗ is extremal at ζ̄ if and only if

∑
k∈Z

(− |ζ|2
R )n

1+R2α+2n+1
= 0.

Consequently, the operator M∗ on
(
H 2(Ω),µαd s

)
is extremal at ζ̄ if and only if the Jordan

Kronecker function f satisfy

f (−R2α+1,− |ζ|2
R ) = 0.

So for a fixed ζ, the real number α ∈ [0,1) must satisfy at least one of these identities

R2α|ζ|2 = R−2 j , j = 0,1,2, ...;or R2α|ζ|2 = R2 j+2, j = 0,1,2, . . .

In any case, one must have

α= (
1− log |ζ|

logR

)
(mod 1).

So the unitary equivalence class of an operator which is extremal at ζ̄, and is the adjoint

of a bundle shift is uniquely determined. Hence we have proved the Theorem stated below.

Theorem 3.10. The operator M∗ on
(
H 2(Ω),µαd s

)
is an extremal operator at the point ζ̄ inΩ∗

if and only if α= (
1− log |ζ|

logR

)
(mod 1).
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Chapter 4

Generalized Curvature Inequality

4.1 Curvature and Local operators

Let Ω be a bounded domain in Cm . Set Ω∗ = {z̄ : z ∈Ω}. Cowen and Douglas also introduced

the class Bn(Ω∗), for a bounded domain Ω∗ ⊆ Cm (cf. [15]). Curto and Salinas have studied

this class with more detail (cf. [16]). We recall the definition here.

Definition 4.1. A m-tuple of commuting bounded operators TTT = (T1,T2, . . . ,Tm) on a complex

separable Hilbert space H is said to be in Bn(Ω∗) if

1. for w = (w1, w2, . . . , wm) in Ω∗, the dimension of the joint kernel
⋂m

k=1 Ker(Tk − wk ) is

equal to n.

2. for w = (w1, w2, . . . , wm) in Ω∗, the operator DTTT−w : H 7→ H ⊕H ⊕ . . .⊕H defined by

DTTT−w (h) =⊕m
k=1(Tk −wk )h, must have closed range.

3.
∨

w∈Ω∗
(⋂m

k=1 Ker(Tk −wk )
)=H

Like one variable case, these above conditions also ensure the existence of a rank n

holomorphic Hermitian vector bundle ETTT overΩ∗, that is,

ET := {(w, v) ∈Ω∗×H : v ∈ ( m⋂
k=1

Ker(Tk −wk )
)
},π(w, v) = w.

The equivalence class of holomorphic Hermitian bundle ET and the joint unitary equivalence

class of the tuple of operators TTT determine each other.

Theorem 4.2 (Cowen-Douglas). Two tuple of operators TTT and SSS in Bn(Ω∗) are jointly unitarily

equivalent if and only if the associated holomorphic Hermitian vector bundles ETTT and ESSS are

locally equivalent.
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Let Ω be a bounded domain in Cm and TTT = (T1,T2, . . . ,Tm) be a commuting tuple of

bounded operators on some separable complex Hilbert space H such that TTT lies in Bn(Ω∗).

Let ETTT be the associated holomorphic Hermitian vector bundle over Ω∗ and K=K(ETTT ,D) be

the curvature associated with canonical connection D of the holomorphic Hermitian vector

bundle ETTT . Let K := ((
Ki , j

))m
i , j=1, where Ki , j is a C∞ cross section of Hom(ETTT ,ETTT ) such that

K(σ) =
m∑

i , j=1
Ki , j (σ) d zi ∧d z̄ j ,

for all C∞ smooth section σ of ETTT . Let w = (w1, . . . , wm) be an arbitrary but fixed point inΩ∗.

Let γ(z) = (γ1(z), . . . ,γn(z)) be a local holomorphic frame of ETTT in a neighbourhood of w say

Ω∗
0 ⊂Ω∗. Then the matrix of the metric of the bundle ETTT at z ∈Ω∗

0 w.r.t the frame γ is given by

hγ(z) = ((〈γ j (z),γi (z)〉))n
i , j=1.

We write ∂i = ∂
∂zi

and ∂̄i = ∂
∂z̄i

. Then Ki , j w.r.t the frame γ is of the form

Ki , j (γ)(z) =−∂̄ j

(
(hγ(z))−1(∂i hγ(z)

))
, z ∈Ω∗

0 .

Since

(T j −w j )γi (w) = 0, i = 1,2, . . . ,n and j = 1,2, . . . ,m, (4.1)

it follows that,

(T j −w j )(∂kγi (w)) = γi (w)δ j ,k , i = 1,2, . . . ,n, and j ,k = 1, . . . ,m, (4.2)

For any natural number k = (p −1)n +q, 1 ≤ p ≤ m +1, and 1 ≤ q ≤ n, set vk := ∂p−1(γq (w)).

Also, it will be useful to let vi := (
v(i−1)n+1, . . . , v(i−1)n+n

)
. Thus vi is also ∂i−1γ, where γ =

(γ1, . . . ,γn). We have that vk , 1 ≤ k ≤ (m +1)n, forms a basis for the subspace

Mw =
m⋂

i , j=1
ker(Ti −wi )(T j −w j ).

Let Nw be the tuple of nilpotent operator (N1, . . . , Nm) defined by Ni (w) = (Ti −wi ) |Mw . We

denote the block operator matrix
((

Ni (w)N j (w)∗
))m

i , j=1 by Nw N∗
w .

Proposition 4.3. There exists an orthonormal basis in the subspace Mw such that the matrix

representation of Nw N∗
w with respect to this basis takes the form(

−(Kγ̃(w))−1 0

0 0

)
,

where γ̃ is a frame in a neighbourhood of w which is also orthonormal at the point w.
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Proof. Let P be an invertible matrix of size (m +1)n × (m +1)n. Let

(u1, . . .um+1) = (v1, . . . ,vm+1)


P1,1 P1,2 . . . P1,m+1

P2,1 P2,2 . . . P2,m+1
...

...
. . .

...

Pm+1,1 Pm+1,2 . . . Pm+1,m+1

 ,

where each Pi , j is a n×n matrix. Clearly, (u1, . . . ,um+1) is a basis, not necessarily orthonormal,

in the subspace Mw .

The set of vectors {u = (u1, . . .um+1)} is an orthonormal basis in Mw if and only if the

scalar matrix P satisfy PP̄ t =G−1, where G denotes the (m+1)n× (m+1)n, grammian matrix((〈v j , vi 〉
))

.

G =


h ∂1h . . . ∂mh

∂̄1h ∂̄1∂1h . . . ∂̄1∂mh
...

...
. . .

...

∂̄mh ∂̄m∂1h . . . ∂̄m∂mh

 .

One choice of P is an upper triangular matrix which actually comes from Gram-Schmidt or-

thogonalization process. There are other choices like G−1/2. Let us fix an invertible matrix P

which is (block) upper triangular and assume that PP̄ t = G−1. Following equation (4.1) and

(4.2), the matrix representation of Nl w.r.t. the basis v = (v1, . . . ,vm+1) is

[
Nl

]
v
=


0n×n . . . 0n×n In×n((1, l +1)th block) . . . 0n×n

0n×n . . . 0n×n 0n×n . . . 0n×n
...

. . .
...

...
. . .

...

0n×n . . . 0n×n 0n×n . . . 0n×n

 ,

for l = 1,2, . . . ,m. Therefore w.r.t the orthonormal basis (u1, . . . ,um+1), the matrix of Nl will be

of the form [
Nl

]
u
= P−1

[
Nl

]
v

P

=


0n×n A1

l . . . Am
l

0n×n 0n×n . . . 0n×n
...

...
. . .

...

0n×n 0n×n . . . 0n×n

 ,

where each Ai
l is a square matrix of size n, for l , i = 1,2, . . . ,m. It is now evident that for l ,r =

1,2, . . . ,m, we have [
Nl N∗

r

]
u
=Q

[
Nl

]
v

G−1
[

Nr

]
v

Q t ,
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where Q = P−1. To continue, we write the matrix G−1 in the form of a block matrix:

G−1 =
(
FF n×n FF n×mn

FF mn×n Rmn×mn

)
(4.3)

=


FF n×n FF n×n FF n×n . . . FF n×n

FF n×n R1,1 R1,2 . . . R1,m

FF n×n R2,1 R2,2 . . . R2,m
...

...
...

. . .
...

FF n×n Rm,1 Rm,2 . . . Rm,m


m+1,m+1

,

where each Ri , j is a n ×n matrix. Then we have[
Nl N∗

r

]
u
=

(
Q1,1Rl ,aQ t

1,1 0n×mn

0mn×n 0mn×mn

)
.

Since P is (block) upper triangular, we have u1 = v1P1,1, that is,

(u1,u2, . . . ,un) = (v1, v2, . . . , vn)P1,1.

The vectors in the tuple u1 are orthonormal and hence P1,1 must satisfy P1,1P t
1,1 = h−1, or

equivalently, Q t
1,1Q1,1 = h. Using the polar decomposition, we have the decomposition Q1,1 =

UQ
p

h for some unitary matrix UQ . Using the unitary UQ , define a new orthonormal basis, say,

y = (y1, . . . ,ym+1) for Mw :

(y1, . . . ,ym+1) = (u1, . . . ,um+1)

(
UQ 0n×mn

0mn×n Imn×mn

)

= (γ(w),v2, . . . ,vn)

( p
h−1 FF n×mn

0mn×n FF mn×mn

)
= (γ̃(w),u2, . . . ,um+1). (4.4)

where γ̃(w) := γ(w)
p

h−1. Hence w.r.t the orthonormal basis (y1, . . . ,ym+1) of the subspace

Mw , the linear transformation Nl N∗
r has the matrix representation

[Nl N∗
r ]y =

(p
hRl ,a

p
h 0n×mn

0mn×n 0mn×mn

)
. (4.5)

Note that matrix representation of Nl w.r.t. the orthonormal basis y = (y1, . . . ,ym+1) for the

subspace Mw , is of the form

[
Nl

]
y
=


0n×n t1

l (w) . . . tm
l (w)

0n×n 0n×n . . . 0n×n
...

...
. . .

...

0n×n 0n×n . . . 0n×n

=
(

0n×n tl (w)

0mn×n 0mn×mn

)
, (4.6)
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where each ti
l (w) is a square matrix of size n, for l , i = 1,2, . . . ,m. Let ttt (w) be the mn ×mn

matrix given by

ttt (w) =
 t1(w)

t2(w)
...

tm (w)

 .

Now following equation (4.5), we then have

ttt (w)ttt (w)
tr = (

p
h ⊗ Im)R(

p
h ⊗ Im). (4.7)

From equation (4.5), we find the block matrix representation for Nw N∗
w . So we have

[Nw N∗
w ]y =

([
Nl N∗

r

]
y

)m

l ,r=1

=
((p

hRl ,r
p

h 0n×mn

0mn×n 0mn×mn

))m

l ,r=1

'
(((p

hRl ,a
p

h
))m

l ,a=1 0

0 0

)
,

(4.8)

where ' denotes the unitary equivalence. Note that this unitary equivalence will be obtained

by changing order of the orthonormal basis from y = (y1, . . . ,ym+1) to ỹ = (y1, ỹ2, . . . , ỹm+1) in

an appropriate manner. Thus

[Nw N∗
w ]ỹ =

(
(
p

h ⊗ Im)R(
p

h ⊗ Im) 0

0 0

)
. (4.9)

Also note that in this change order of the first n vector in the orthonormal basis remains un-

changed.

The Grammian G admits a natural decomposition as a 2×2 block matrix, namely,

G =


h ∂1h . . . ∂mh

∂̄1h ∂̄1∂1h . . . ∂̄1∂mh
...

...
. . .

...

∂̄mh ∂̄m∂1h . . . ∂̄m∂mh

=
(

hn×n Xn×mn

Lmn×n Smn×mn

)
.

Computing the 2×2 entry of the inverse of this block matrix and equating it to R, we have

R−1 = S −Lh−1X

= ((
∂̄i∂ j h

))m
i , j=1 −

((
(∂̄i h)h−1(∂ j h)

))m
i , j=1

= ((
h∂̄i (h−1∂ j h)

))
= −((

hKi , j (γ)(w)
))

= −(h ⊗ Im)Kγ(w),
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where Ki , j (γ)(w) denote the matrix of the curvature Ki , j at w ∈ Ω∗
0 w.r.t the frame γ of the

bundle ETTT onΩ∗
0 and Kγ(w) = ((

Ki , j (γ)(w)
))m

i , j=1. Hence we have

R = (−Kγ(w)
)−1(h−1 ⊗ Im). (4.10)

Combining equation (4.9) and (4.10), we conclude that

[Nw N∗
w ]ỹ =

(
(
p

h ⊗ Im)
(−Kγ(w)

)−1(
p

h ⊗ Im)−1 0

0 0

)

=
((−Kγ̃(w)

)−1 0

0 0

)
, (4.11)

where γ̃(z) is the new holomorphic frame onΩ∗
0 defined by

γ̃(z) = γ(z)
√

hγ(w)−1 = γ(z)
√

h−1, z ∈Ω∗
0 .

and using the transformation rule for the curvature with respect to two frame onΩ∗
0 , namely,

Ki , j (γ̃)(z) =p
h(Ki , j (γ)(z))

p
h−1, for all z ∈Ω∗

0 , we get that

Kγ̃(w) = (
p

h ⊗ Im)(Kγ(w))(
p

h ⊗ Im)−1.

Since hγ̃(w) = I , the frame γ̃ is orthonormal at w.

Note that following equation (4.7) and (4.10), we also have

ttt (w)ttt (w)
tr =−(Kγ̃(w))−1. (4.12)

As an application, it is easy to obtain a curvature inequality for those commuting tuples of

operators TTT in the Cowen-Douglas class Bn(Ω∗) which admit Ω∗ as a spectral set. This is

easily done via the holomorphic functional calculus. Since the matrix representation of Nl

w.r.t. the orthonormal basis y = (y1, . . . ,ym+1) for the subspace Mw , is of the form

[
Nl

]
u
=

(
0n×n tl

0mn×n 0mn×mn

)
.

Now it is easy to see that for any holomorphic function f defined on some open neighbour-

hood of the compact setΩ∗, we have

f (TTT )|Mw = f
(
TTT |Mw

)
=

(
f (w) 5 f (w) · ttt (w)

0 f (w)

)
= f (TTT w ),
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where TTT w is the m tuple of operator TTT |Mw and

5 f (w) · ttt (w) = ∂1 f (w)t1(w)+·· ·+∂m f (w)tm(w)

= (
(∂1 f (w))In , . . . , (∂m f (w))In

)
(ttt (w))

= (In ⊗5 f (w))(ttt (w)).

If TTT admits Ω∗ as a spectral set, then the inequality I − f (TTT w )∗ f (TTT w ) ≥ 0 is evident for all

holomorphic functions mapping Ω∗ to the unit disc D. As is well-known, we may assume

without loss of generality that f (w) = 0. Consequently, the inequality I − f (TTT w )∗ f (TTT w ) ≥ 0

with f (w) = 0 is equivalent to(
In ⊗5 f (w)

tr)
(In ⊗5 f (w)) ≤−(Kγ̃(w)). (4.13)

Let V ∈Cmn be a vector of the form

V =
( V1···

Vm

)
, where Vi =

( Vi (1)···
Vi (n)

)
∈Cn .

The carathéodory norm of the tangent vector V ∈Cmn is defined by

(CΩ,w (V ))2 = sup
{〈(In ⊗5 f (w)

tr)
(In ⊗5 f (w))V ,V 〉 : f ∈O (Ω),‖ f ‖∞ ≤ 1, f (w) = 0

}
= sup

{ m∑
i , j=1

∂i f (w)∂ j f (w)〈V j ,Vi 〉 : f ∈O (Ω),‖ f ‖∞ ≤ 1, f (w) = 0
}
.

Thus from equation (4.13), a proof of the theorem below follows.

Theorem 4.4. Let TTT be a commuting tuple of operator in Bn(Ω) admittingΩ∗ as a spectral set.

Then for an arbitrary but fixed point w ∈Ω∗, there exist a frame γ̃ of the bundle ETTT , defined in

a neighbourhood of w, which is orthonormal at w, so that following inequality holds

〈Kγ̃(w)V ,V 〉 ≤−(CΩ,w (V ))2, for every V ∈Cmn .

4.2 Curvature inequality for operators of higher rank

In this section, using the Proposition 4.3, we derive a curvature inequality specializing to the

case of a bounded planar domainsΩ∗. The computations in this case are direct and somewhat

more transparent, therefore for the sake of clarity, we repeat below what has been already said

in the general case.

Let T be an operator in Bn(Ω∗) and assume that it admits Ω∗ as a spectral set. One

obtains the familiar curvature inequality for such an operator T by noting that the restriction
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of the operator T to the invariant subspace Mw = ker(T −w)2, w ∈ Ω∗, must also admit Ω∗

as a spectral set. For an operator T in Bn(Ω∗), the restriction to the invariant subspace Mw =
ker(T −w)2, w ∈Ω∗, admits Ω∗ as a spectral set as before. This gives rise to the generalized

curvature inequality. Uchiyama (cf. [38]) was the first one to prove a curvature inequality for

operators in Bn(D) using techniques from Sz.-Nagy – Foias model theory for contractions. He

then obtained a generalization to domains Ω ⊆ D. However, the inequality we obtain below

follows directly from the functional calculus applied to the local operators. More recently, K.

Wang and G. Zhang (cf. [42]) have obtained a series of very interesting (higher order) curvature

inequalities for operators in B1(Ω).

Let T be an operator in Bn(Ω∗) withΩ∗ as a spectral set for T . Fix a point w ∈Ω∗. As in

the previous section, we have γ(z) = (γ1(z), . . . ,γn(z)) is a local holomorphic frame of ET , in a

neighbourhood of w say Ω∗
0 ⊂Ω∗ and the metric of the bundle ET at z ∈Ω∗

0 w.r.t the frame γ

is given by hγ(z) = ((〈γ j (z),γi (z)〉))n
i , j=1, for all z ∈Ω∗

0 . We have that the matrix representation

of Nw = (T −w)|Mw w.r.t the ordered basis

(γ(w),γ′(w)) = (v1,v2) = (γ1(w), . . . ,γn(w),γ′1(w), . . . ,γ′n(w))

is of the form

[Nw ]v =
(

0n×n In×n

0n×n 0n×n

)
.

The Grammian G corresponding to this basis is of the form

G =
(

h ∂h

∂̄h ∂̄∂h

)
,

where the matrix h is given by h = hγ(w). Let u = (u1,u2) be an orthonormal basis of ker(T −
w)2 obtained from any invertible block upper triangular matrix P satisfying PP̄ t = G−1 as

follows:

(u1,u2) := (v1,v2)P = (v1,v2)

(
P1,1 P1,2

0 P2,2

)
.

The matrix of Nw w.r.t this basis is of the form

[Nw ]u = P−1[Nw ]γ(w),γ′(w)P

=
(

0n×n A

0n×n 0n×n

)
.

where the matrix A is given by A = P−1
1,1P2,2. From the equation (4.4), we have that

(y1,y2) = (u1,u2)

(
UQ 0n×n

0n×n In×n

)
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is also an orthonormal basis for Mw and the matrix of Nw w.r.t this basis is of the form

[Nw ]y =
(

0 W

0 0

)
, (4.14)

where W =UQ
−1 A. Consequently we get that w.r.t the orthonormal basis y = (y1,y2), the op-

erator Nw N∗
w has the matrix representation

[
Nw N∗

w

]
y
=

(
W W t 0

0 0

)
.

Now by changing order of the orthonormal basis from y = (y1,y2) to ỹ = (y1, ỹ2) in an appro-

priate manner (as was explained in the previous section), we have

[
Nw N∗

w

]
ỹ
=

(
W W t 0

0 0

)
.

Comparing with equation (4.11), we infer that

W W t = (−Kγ̃(w)
)−1. (4.15)

So using eqn (4.14) we have matrix of T |Mw w.r.t. the orthonormal basis y = (y1,y2) is of the

form [
T |Mw

]
y
=

(
w In W

0 w In

)
,

where W satisfy the relation W W t = (−Kγ̃(w)
)−1. Now it is straightforward to verify that for

a rational function r whose poles are offΩ∗,

(
r (T|Mw )

)
y
=

(
r (w)In r ′(w)W

0 r (w)In

)
.

SinceΩ∗ is a spectral set for T we have, sup{‖r (T )‖ : r ∈ Rat(Ω∗),‖r‖∞ ≤ 1,r (w) = 0} ≤ 1. This

gives us

4π2SΩ∗(w, w)2W W t ≤ In . (4.16)

where SΩ∗(x, y) denote the Sz̈ego kernel for the domainΩ∗ which satisfy

2πSΩ∗(w, w) = sup{|r ′(w)| : r ∈ Rat(Ω∗),‖r‖∞ ≤ 1,r (w) = 0}.

From equation (4.15) and equation (4.16), we get

Kγ̃(w) ≤−4π2SΩ∗(w, w)2In . (4.17)
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Note that when n = 1, that is, T ∈ B1(Ω∗), then curvature function Kσ(w) is independent of

the frame σ. Then we denote the curvature function by KT (w). And from equation (4.17), we

get our known curvature inequality

KT (w) ≤−4π2SΩ∗(w, w)2 for all w ∈Ω∗.

In general, for T ∈ Bn(Ω∗), the curvature matrix Kσ(w) w.r.t a frame σ is not independent of

the choice of the frame. However, the transformation rule for curvature for a change of frame

ensure that the eigenvalues of Kσ(w) are independent of the choice of a frame. Thus from

equation (4.17), we have the following theorem:

Theorem 4.5. Let Ω∗ be a bounded domain in the complex plane C and T be an operator in

Bn(Ω∗) admitting Ω∗ as a spectral set. Then each of the eigenvalues of the curvature K (w) of

the bundle ET is less or equal to −4π2SΩ∗(w, w)2 for every w ∈Ω∗.
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Chapter 5

Module tensor Product and dilation

5.1 Preliminaries on Hilbert module

In this section, we discuss Hilbert modules in the Cowen-Douglas class and their tensor prod-

ucts. First we recall the definition of a Hilbert modules over a function algebra.

Definition 5.1 (Hilbert Module). A Hilbert module H over a normed, unital, complex algebra

A consists of a separable complex Hilbert space H together with a continuous map (a,h) 7→
a ·h from A ×H to H satisfying the following conditions:

For a,b ∈A ,h,hi ∈H , and α,β ∈C,

1. 1 ·h = h,

2. (ab) ·h = a · (b ·h),

3. (a +b) ·h = a ·h +b ·h, and

4. a · (αh1 +βh2) =α(a ·h1)+β(a ·h2).

For a in A , let Ta : H 7→H denote the linear map Ta(h) = a ·h. If H is a Hilbert module

over A , then the continuity of the module action in the second variable ensures that Ta is

bounded. However, the continuity of the module map in both the variables together with the

principle of uniform boundedness leads to a slightly stronger conclusion in the Proposition

given below.

Proposition 5.2. [19, Proposition 1.3] Let H be a Hilbert module over a function algebra A .

Then there exists a constant K such that ‖Ta‖ ≤ K ‖a‖ for all a ∈A .
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The notion of a Hilbert module H over the algebra A and that of a continuous ho-

momorphism of the algebra A into the algebra of bounded linear operators L (H ) are in

bijective correspondence. Indeed, if H is a Hilbert module over A , then

ρH : A 7→L (H ), ρH (a) = Ta

is clearly a unital algebra homomorphism. Also, it is easy to verify that

‖ρH ‖ = inf{K : ‖Ta‖ ≤ K ‖a‖, a ∈A }.

Conversely, any continuous homomorphism ρ : A 7→L (H ) defines a Hilbert module via the

action (a,h) 7→ ρ(a)h. A Hilbert module H is said to be contractive if ‖ρH ‖ ≤ 1.

Let Ω be a bounded, open and connected subset of Cm . Let H be a complex separa-

ble Hilbert space. We shall assume that H is a Hilbert module over the function algebra

O (Ω), consisting of all those functions which are holomorphic in some neighbourhood of Ω,

equipped with sup norm on Ω. Now we give a list of Hilbert modules and discuss several of

their properties in detail.

Example 5.3. Let TTT := (T1, . . . ,Tm) be an m-tuple of commuting jointly subnormal operator

in L (H ) with joint spectrum, in the sense of Taylor (cf. [37]), contained in Ω and let NNN :=
(N1, . . . , Nm) be its minimal commuting normal extension to a Hilbert space K containing

H . Then Putinar has shown that the joint spectrum σ(NNN ) of NNN is contained in the joint spec-

trum σ(TTT ), of TTT (cf. [32]). This is the spectral inclusion theorem for commuting tuple of joint

subnormal operators. For every r ∈ O (Ω), we have ‖r (NNN )‖ equals to sup{|r (w)| : w ∈ σ(NNN )}.

From the spectral inclusion theorem of Putinar, it follows that Ω is a spectral set for the sub-

normal tuple of operators TTT , that is,

‖r (TTT )‖ ≤ ‖r (NNN )‖ ≤ ‖r‖∞, r ∈O (Ω),

where ‖r‖∞ = sup{|r (w)| : w ∈Ω}. Thus H is a contractive Hilbert module over O (Ω), where

the module action is given by r ·h = r (TTT )(h), for all h ∈H .

Example 5.4. Let w = (w1, . . . , wm) be an arbitrary but fixed point in Ω. For a non zero vector

a = (a1, . . . , am) in Cm , let C2
w (a) be the Hilbert module over the function algebra O (Ω) with

the module action given by

r · v =
(

r (w) 0

(Or (w).a) r (w)

)(
v1

v2

)
, r ∈O (Ω), v =

(
v1

v2

)
∈C2,

where (Or (w).a) = a1
∂
∂z1

r (w)+·· ·+am
∂

∂zm
r (w).
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This module action on C2
w (a) is induced by the following commuting m-tuple of 2×2

matrices whose joint spectrum equal to {w}:

TTT :=
(( w1 0

a1 w1

)
, . . . ,

( wm 0

am wm

))
.

So, we have, r ·v = r (TTT )(v), for all v inC2
w (a). Following Lemma gives a complete characteriza-

tion of contractivity of the module C2
w (a) in terms of the Carathéodory norm CΩ,w (a), which

is defined to be the solution to the following extremal problem, that is,

CΩ,w (a) := sup
{ |(Or (w).a)|

1−|r (w)|2 : r ∈O (Ω),‖r‖∞ ≤ 1
}
.

Let r be a non constant function in O (Ω) with ‖r‖∞ ≤ 1. Let ϕr (w) be the automorphism of

unit disk D, defined by ϕr (w)(z) = z−r (w)
1−r (w)z

, z ∈D. Note that ϕr (w) ◦ r is a function in O (Ω) with

‖ϕr (w) ◦ r‖∞ ≤ 1 and (ϕr (w) ◦ r )(w) = 0. It is easy to verify that

|(O(ϕr (w) ◦ r )(w).a)| = |(Or (w).a)|
1−|r (w)|2 .

Now it is evident that the Carathéodory norm, CΩ,w (a), is also equal to the solution of the

following extremal problem:

CΩ,w (a) := sup{|(O f (w).a)| : f ∈O (Ω), f (w) = 0,‖ f ‖∞ ≤ 1}. (5.1)

We state and give the easy proof of a lemma (cf. [31, Lemma 4.1]) which is useful in many of

our computations which follow.

Lemma 5.5. C2
w (a) is a contractive Hilbert module if and only if CΩ,w (a) ≤ 1.

Proof. For any two complex numbers a,c with |a|, |c| ≤ 1, the 2× 2 matrix X = (
a 0
b c

)
is con-

tractive if and only if det(I −X ∗X ) > 0, that is, |b|2 ≤ (1−|a|2)(1−|c|2). Now it follows that the

Hilbert module C2
w (a) is contractive if and only if |(Or (w).a)| ≤ (1−|r (w)|2), or equivalently,

|(Or (w).a)|
1−|r (w)|2 ≤ 1, r ∈O (Ω), ‖r‖∞ ≤ 1.

Hence we conclude that the module C2
w (a) is contractive if and only if CΩ,w (a) ≤ 1.

Example 5.6. Let w1 = (w 1
1 , · · · , w 1

m) and w2 = (w 2
1 , · · · , w 2

m) be two distinct arbitrary but fixed

points inΩ. For a non zero scalar t in C, let C2
w1,w2

(t (w2−w1)) be the Hilbert module over the

function algebra O (Ω) with the module action given by

r · v =
(

r (w1) 0

t (r (w2)− r (w1)) r (w2)

)(
v1

v2

)
, r ∈O (Ω), v =

(
v1

v2

)
∈C2.
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As before, this module action is induced by the following m-tuple TTT of commuting 2×2 ma-

trices with joint spectrum equal to {w1, w2}:

TTT :=
(( w 1

1 0

t (w 2
1 −w 1

1) w 2
1

)
, . . . ,

( w 1
m 0

t (w 2
m −w 1

m) w 2
m

))
and we have r · v = r (TTT )(v). The following lemma gives a criterion for the contractivity of the

Hilbert modules C2
w1,w2

(t (w2 −w1)) in terms of the möbius distance

mΩ(w1, w2) := sup
{ |r (w1)− r (w2)|
|1− r (w1)r (w2)|

: r ∈O (Ω),‖r‖∞ ≤ 1
}

.

Using the Schwarz-Pick lemma, we have mD(a,b) = |a−b|
|1−āb| , for every a,b ∈ D. Schwarz-Pick

lemma also tells us that mD(ϕ(a),ϕ(b)) = mD(a,b) for every automorphism ϕ of unit disk

D and a,b ∈ D. Let r be a non constant function in O (Ω) with ‖r‖∞ ≤ 1. Let ϕr (w2) be the

automorphism of unit disk Dwhich takes r (w2) to 0. Note that ϕr (w2) ◦ r is a function in O (Ω)

with ‖ϕr (w2) ◦ r‖∞ ≤ 1 and (ϕr (w2) ◦ r )(w2) = 0. From Schwarz-Pick lemma we have that

|r (w1)− r (w2)|
|1− r (w1)r (w2)|

= |(ϕr (w2) ◦ r )(w1)− (ϕr (w2) ◦ r )(w2)|
|1− (ϕr (w2) ◦ r )(w1)(ϕr (w2) ◦ r )(w2)|

= |(ϕr (w2) ◦ r )(w1)|.

Now it is evident that the möbius distance, mΩ(w1, w2), between the points w1 and w2 inΩ is

also equal to the solution of the following extremal problem:

mΩ(w1, w2) := sup
{| f (w1)| : f ∈O (Ω),‖ f ‖∞ ≤ 1, f (w2) = 0

}
. (5.2)

Lemma 5.7. The Hilbert module C2
w1,w2

(t (w2 −w1)) over the function algebra O (Ω) is contrac-

tive if and only if mΩ(w1, w2) ≤ 1p
1+|t |2

.

Proof. We have seen earlier that for two complex number a, c with |a|, |c| ≤ 1, a scalar matrix(
a 0
b c

)
is contraction if and only if |b|2 ≤ (1−|a|2)(1−|c|2). Now it follows that the Hilbert module

C2
w1,w2

(t (w2 −w1)) is contractive if and only if |t (r (w2)− r (w1)|2 ≤ (1−|r (w1)|2)(1−|r (w2)|2),

or equivalently,
|r (w1)−r (w2)|
|1−r (w1)r (w2)| ≤

1p
1+|t |2

, r ∈O (Ω) ‖r‖∞ ≤ 1.

Hence we conclude that the Hilbert module C2
w1,w2

(t (w2 − w1)) is contractive if and only if

(mΩ(w1, w2)) ≤ 1p
1+|t |2

.

Definition 5.8 (Submodule). Let H be a Hilbert module over a function algebra A and ρH

be the associated homomorphism. A closed subspace S of H is said to be a submodule of

H provided a · s ∈ S for every a ∈ A and s ∈ S . In other words, S is a invariant subspace

for the operator ρH (a) for every a ∈ A . Naturally, S is a Hilbert module whose associated

homomorphism ρS is given by the restriction ρH (a)|S , that is, ρS (a) = ρH (a)|S , a ∈A .
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Definition 5.9 (Quotient module). Let H be a Hilbert module over a function algebra A and

ρH be the associated homomorphism. Let S be a Hilbert submodule of H . Then the sub-

space S ⊥ can be made a Hilbert module over A in a natural manner. Indeed, the module

action on S ⊥ is given by (a, v) 7→ PS ⊥(a · v), for a ∈A and v ∈S ⊥, where PS ⊥ is the orthog-

onal projection from H onto S ⊥. In other words,

0 −→S
i−→H

P
S ⊥−→ S ⊥ −→ 0

is a short exact sequence of Hilbert modules over the algebra A . Thus S ⊥ is the quotient

module. Note that the associated homomorphism ρS ⊥ for the quotient module S ⊥ is given

by the compression of ρH (a) into S ⊥, that is, ρS ⊥(a) = PS ⊥(ρH (a))|S ⊥ for every a ∈A .

Remark 5.10. Let M be a closed subspace of a Hilbert module H over A . In general, the

compression of the module action to M , that is, (a,m) 7→ PM (a ·m) for a ∈ A and m ∈ M

need not define a module action. The associativity required of the module product fails. It

defines a module action on M if and only if PM (a1a2 ·m) = PM (a1 · (PM (a2 ·m))) for every

a1, a2 ∈A and m ∈M . Such modules are often called semi-submodule of the Hilbert module

H . In [35, Lemma 0], Sarason has provided a complete characterization of a semi-submodule.

Theorem 5.11 (Sarason). Let H be a Hilbert module over A and M be a closed subspace of H .

For a ∈A , the map (a,m) 7→ PM (a ·m), m ∈M , defines a module action on M over the algebra

A if and only if there exist two submodules F and G of the Hilbert module H such that F ⊆G

and M =G ªF .

Definition 5.12 (Equivalence of Hilbert module). Let H and K be two Hilbert module over

a function algebra A . Let ρH and ρK be the associated homomorphism from A into L (H )

and L (K ) respectively. A bounded linear map X : H 7→ K is said to be a module map if

XρH (a) = ρK (a)X for every a ∈ A . The modules H and K are said to be similar if there

exist a invertible module map from H onto K and the modules are said to be isomorphic if

there exists a unitary module map from H onto K .

Let w, w ′ be two points inΩ and a,b be two vectors in Cm . Consider the Hilbert module

C2
w (a) and C2

w ′(b) over the algebra O (Ω), as described in example 5.4. It is easy to verify that

the modules C2
w (a) and C2

w ′(b) are isomorphic if and only if w = w ′ and a = λb, for some

complex number λ in the unit circle T := {z ∈ C : |z| = 1}. Similarly, for the Hilbert modules

C2
w1,w2

(t (w2 − w1)) and C2
z1,z2

(s(z2 − z1)), as described in example 5.6, are isomorphic if and

only if (w1, w2) = (z1, z2) and t =λs, for some λ ∈T.

Let A be a normed, unital, complex function algebra and MA be its maximal ideal

space. Let C (MA ) be the set of all continuous function on MA , where MA is equipped with

weak star topology. We have that A is a sub-algebra of C (MA ) via the Gelfand transform
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(cf. [12, Ch.7]). The smallest closed subset of MA on which each functions in A achieves its

maximum modulus, is called the Ŝilov boundary for A and is denoted by ∂A . Existence of

such boundary is well known (see [21, pg. 9]). Thus, we may regard A as a sub-algebra of the

function algebra C (∂A ).

Definition 5.13 (Dilation). Let H be a Hilbert module over a function algebra A and ρH be

the associated homomorphism. The module H is said to have a ∂A dilation if there exist a

contractive Hilbert module K ⊇H over C (∂A ) such that PH ρK (a)|H = ρH (a) for all a ∈A .

It is now evident (see Theorem 5.11) that the existence of a ∂A dilation is equivalent

to the existence of a pair of nested submodules of K over A . The notion of a module which

admits a ∂A dilation and the complete contractivity of the homomorphism determined by

the module action are intimately related. First, recall the definition of complete contractivity.

Let A be a normed unital function algebra and Mn be the C*algebra of n ×n complex

matrices. Since A is a sub-algebra of the C* algebra C (∂A ), we regard A ⊗Mn as a sub-

algebra of the C* algebra C (∂A )⊗Mn . Let H be a Hilbert module over A and ρH : A 7→
L (H ) be the associated homomorphism. The module H is said to be completely contractive

over A if the map ρ⊗ In : A ⊗Mn 7→L (H )⊗Mn is contractive for every n ∈N.

A deep theorem due to Arveson states that a Hilbert module H over A admits a ∂A

dilation if and only if the module H is completely contractive over A (cf. [5, Theorem 1.2.2]).

A contractive module H over a function algebra A is not necessarily completely contractive

[27]. However, the modules described in Examples 5.4 and 5.6 are completely contractive

if and only if it is contractive [4, Theorem 1.9]. In fact, Agler [4, Proposition 3.5] has shown

that the module C2
w1,w2

(t (w2 − w1)) is completely contractive if and only if it is contractive.

Following this he remarked that a similar statement can be made for the modulesC2
w (a) using

a limiting argument. However, it is possible to show that the module C2
w (a) is contractive if

and only if it is completely contractive directly. We provide a short proof here.

Let us assume that the Hilbert module is C2
w (a) is contractive. By Lemma 5.5, we have

CΩ,w (a) ≤ 1. Recall that the module action on C2
w (a) is induced by the following commuting

m-tuple of 2×2 matrices whose joint spectrum equal to {w}:

TTT :=
(( w1 0

a1 w1

)
, . . . ,

( wm 0

am wm

))
.

So, we have, r · v = r (TTT )(v), for all v ∈ C2
w (a) and for all r ∈ O (Ω). Let (Mk )1 be the open unit

ball with respect to the operator norm in k ×k matrices and F :Ω→ (Mk )1 be a holomorphic

function. We have

F (TTT ) =
(

F (w) 0

DF (w)(a) F (w)

)
,
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where DF (w)(a) = a1
∂
∂z1

F (w)+ ·· · + am
∂

∂zm
F (w). So, the module C2

w (a) is completely con-

tractive if and only ‖F (TTT )‖Op ≤ 1, for every holomorphic F : Ω → (Mk )1 and k ∈ N. Using

zero lemma (cf. [28, Lemma 1.6]), we get that the module C2
w (a) is completely contractive if

and only if ‖DF (w)(a)‖Op ≤ 1, for every holomorphic F :Ω→ (Mk )1 satisfying F (w) = 0 and

k ∈N. The holomorphic function F is easily seen to be (Carathéodory) norm decreasing and

the Carathéodory norm at 0 of (Mk )1 is the operator norm. Thus for any holomorphic map

F :Ω→ (Mk )1 such that F (w) = 0, we have that

‖DF (w)(a)‖Op =C(Mk )1,0)(DF (w)(a)) ≤CΩ,w (a) ≤ 1.

This completes the proof.

5.2 Module tensor product

Definition 5.14 (Module tensor product). Let H and K be two Hilbert modules over a func-

tion algebra A . There are two natural ways to make H ⊗K a Hilbert module. One can define

module actions via a · (h ⊗k) 7→ (a ·h)⊗k or a · (h ⊗k) 7→ h ⊗ (a ·k) These are known as the

left and right module tensor products of H and K and these are denoted by A (H ⊗K ) and

(H ⊗K )A respectively. Consider the closed subspace N of H ⊗K generated by vectors of

the form (a ·h)⊗k −h ⊗ (a ·k) for h ∈ H and k ∈ K . Clearly N is a submodule of both the

left and right module tensor products. Now consider the quotient module A (H ⊗K )/N and

(H ⊗K )A /N . As Hilbert space both these modules can be identified as N ⊥ with the module

action given by the compression of the left and the right module action to N ⊥, respectively.

Since PN ⊥((a ·h)⊗k) = PN ⊥(h⊗(a ·k)), it follows that these quotient modules are isomorphic.

Such a quotient module is called the module tensor product of H and K over the function

algebra A and we let H ⊗A K denote this module tensor product.

Let Ω be a bounded domain in Cm . Set Ω∗ = {z̄ | z ∈Ω}, which is again a bounded do-

main in Cm . Let HK be a Hilbert space consisting of holomorphic function on Ω possessing

a reproducing kernel K . Thus K : Ω×Ω → C is holomorphic in the first variable and anti-

holomorphic in the second. Let MMM = (Mz1 , . . . , Mzm ) be the commuting m-tuple of multipli-

cation by the coordinate functions on HK , which are assumed to be bounded. Let MMM∗ de-

note the commuting m-tuple (M∗
z1

, . . . , M∗
zm

). Recall that any commuting m-tuple operators

TTT = (T1, . . . ,Tm) in the Cowen-Douglas class B1(Ω∗) is jointly unitarily equivalent to the m-

tuple MMM∗ on some reproducing kernel Hilbert space HK , (cf. [16]). We will assume, without

loss of generality, that an operator tuple TTT in B1(Ω∗) has been realized as above.

We further assume thatΩ is a c− spectral set for the operator tuple MMM , that is, σ(MMM) ⊆Ω
and

‖r (MMM)‖ ≤ c‖r‖∞, r ∈O (Ω),
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for some constant c > 0. Thus the module action

r ·h = r (MMM)(h), r ∈O (Ω),h ∈HK .

defined by the m- tuple of operators MMM makes HK a Hilbert module over O (Ω).

Let w = (w1, · · · , wm) be an arbitrary but fixed point in Ω. For a non-zero vector a =
(a1, . . . , am) in Cm , from example 5.4, we have that C2

w (a) is the Hilbert module over the func-

tion algebra O (Ω). Now we want to find the module tensor product HK ⊗O (Ω)C
2
w (a), which is

the orthocomplement of the subspace N of HK ⊗C2, where

N =∨{r ·h ⊗ v −h ⊗ r · v | r ∈O (Ω),h ∈HK , v ∈C2}.

The module action on N ⊥ is induced by the compression PN ⊥(MMM ⊗ I )|N ⊥ . Now we will find

an orthonormal basis for N ⊥ and the matrix representation of PN ⊥(MMM⊗I )|N ⊥ w.r.t that basis.

Let N (w) and N 2(w) be the subspaces of H (K ) defined by

N (w) =
m⋂

k=1
Ker(M∗

k − w̄k ) =C[γ(w)] and

N 2(w) =
m⋂

k,l=1
Ker(M∗

k − w̄k )(M∗
l − w̄l ) =∨{γ(w), ∂̄1γ(w), . . . , ∂̄mγ(w)},

where γ(w) = K (·, w) and ∂̄iγ(w) = ∂
∂w̄i

K (·, w). It is easy to see that, ( f ⊗e1+g ⊗e2) ∈N ⊥ if and

only if 〈(r − r (w)).h, g 〉HK = 0 and 〈(r − r (w)).h, f 〉HK = (Or (w).a)〈h, g 〉HK for every h ∈ HK

and r ∈A (Ω). It then follows that g ∈ N (w) and f ∈ N 2(w). Also, ( f ⊗ e1 + g ⊗ e2) ∈N ⊥ if and

only if

g = c1γ(w) and g = c2γ(w)+ c(ā1∂̄1γ(w)+·· ·+ ām ∂̄mγ(w)).

for some scalars c1 and c2. Consequently we have that{(
γ(w)

0

)
,

(
ā1∂̄1γ(w)+·· ·+ ām ∂̄mγ(w))

γ(w)

)}
is a basis for N ⊥. For brevity of notation let’s denote the vector (ā1∂̄1γ(w)+·· ·+ ām ∂̄mγ(w))

in HK by ∂̄aγ(w). Since (M∗
l − w̄l )(γ(w)) = 0 and (M∗

l − w̄l )(∂̄iγ(w)) = δi ,l (γ(w)), the matrix

representation of (M∗
l ⊗ I )|N ⊥ is of the form

[(M∗
l ⊗ I )|N ⊥] =

(
w̄l āl

0 w̄l

)
.

Now we find the matrix representation of (M∗
l ⊗ I )|N ⊥ w.r.t the orthonormal basis obtained

from this pair of linearly independent vectors using the Gram-Schmidt orthogonalization.

We first prove a useful Lemma.
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Lemma 5.15. Let βv = {v1, v2} be a basis of a inner product space V and A be a linear map in

L (V ) whose matrix representation w.r.t the basis βv is of the form(
λ µ

0 η

)
.

Let βu = {u1,u2} be the orthonormal basis obtained from βv by applying Gram-Schmidt or-

thonormalization. Then w.r.t the basis βu , the matrix of A will be of the formλ (η−λ)〈v2,v1〉+µ‖v1‖2p
‖v1‖2‖v2‖2−|〈v1,v2〉|2

0 η

 .

Proof. The proof is a straightforward computation. Note that the basisβv can be transformed

to the basis βu by the transition matrix P : (u1,u2) = (v1, v2)P, where

P =
 1
‖v1‖

−〈v2,v1〉
‖v1‖

p
‖v1‖2‖v2‖2−|〈v1,v2〉|2

0 ‖v1‖p
‖v1‖2‖v2‖2−|〈v1,v2〉|2

 .

Then the matrix [A]βu of A w.r.t the basis βu is easily seen to be P−1[A]βv P. An easy computa-

tion shows that it is of the form claimed in the Lemma.

With respect to the orthonormal basis obtained in the preceding Lemma, matrix repre-

sentation of the operator (M∗
zl
⊗ I )|N ⊥ takes the form

[(M∗
zl
⊗ I )|N ⊥] =

(
w̄l

ālp
1−〈KK (w̄)a,a〉

0 w̄l

)
,

where

〈KK (w̄)a, a〉 =−‖γ(w)‖2‖∂̄aγ(w)‖2 −|〈γ(w), ∂̄aγ(w)〉|2
‖γ(w)‖4

.

We pause to point out that KK (w̄), w̄ ∈Ω∗, is the curvature of the operator MMM∗ acting

on the Hilbert space HK . It is the (1,1)− form

m∑
i , j=1

Ki , j (w̄)d zi ∧d z̄ j ,

where

Ki , j (w̄) =−(
∂ j ∂̄i logK

)
(w, w)

=−‖γ(w)‖2〈∂̄iγ(w), ∂̄ jγ(w)〉−〈∂̄iγ(w),γ(w)〉〈γ(w), ∂̄ jγ(w)〉
‖γ(w)‖4

, w ∈Ω.
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Consequently, we have that

[PN ⊥
(
Mzl ⊗ I

)
|N ⊥] =

(
wl 0
alp

1−〈KK (w̄)a,a〉 wl

)
. (5.3)

Hence we have proved the following.

Proposition 5.16. The module tensor product HK ⊗O (Ω)C
2
w (a) is isomorphic to C2

w (â), where

â is the vector given by â = ap
1−〈KK (w̄)a,a〉 .

Remark 5.17. Notice that for any non zero λ in C, we have

�(λa) = λ√
1−|λ|2〈KK (w̄)a, a〉

a.

Clearly the set {�(λa) : λ ∈ C,λ 6= 0} is equal to the set {t a : |t | ∈ (
0, 1p−〈KK (w̄)a,a〉

)
}. If we assume

that the tuple of operator MMM acting on HK is jointly subnormal with normal spectrum in the

Ŝilov boundary ofΩ, then for every non zero vector a ∈Cn , it follows from Sarason’s Theorem

5.11 that the module tensor product HK ⊗O (Ω) C
2
w (a) = C2

w (â) admits a boundary dilation.

So, for every non zero vector a ∈ Cn , the Hilbert module C2
w (t a), where |t | ∈ (

0, 1p−〈KK (w̄)a,a〉
)
,

admits a boundary dilation if the operator tuple MMM , acting on HK , is jointly subnormal with

normal spectrum in Ŝilov boundary ofΩ.

Let w1 = (w 1
1 , . . . , w 1

m) and w2 = (w 2
1 , . . . , w 2

m) be two distinct arbitrary but fixed point in

Ω. For a non zero scalar t in C, from example 5.6, we have C2
w1,w2

(t (w2 − w1)) is the Hilbert

module over the function algebra O (Ω). The module tensor product HK ⊗O (Ω)C
2
w1,w2

(t (w2 −
w1)), in this case, is found by methods similar to the ones used for the case w1 = w2. Therefore,

we shall not repeat all the details. Let

N =∨{r ·h ⊗ v −h ⊗ r · v | r ∈O (Ω),h ∈HK , v ∈C2} ⊆HK ⊗C2.

As before, the compression of the operator tuple PN ⊥(MMM ⊗ I )|N ⊥ defines the required module

tensor product. We find an orthonormal basis for N ⊥ and the matrix representation for this

compression w.r.t this basis. Let N (w2) and N (w1, w2) be the subspaces of HK defined by

N (w2) =
m⋂

k=1
Ker(M∗

k − w̄ 2
k ) =∨{K (·, w2)}, and

N (w1, w2) =
m⋂

j ,k=1
Ker(M∗

j − w̄ j
1)(M∗

k − w̄ 2
k ) =∨{K (·, w1),K (·, w2)}.

It is easy to see that, ( f ⊗ e1 + g ⊗ e2) ∈ N ⊥ if and only if 〈(r − r (w2)).h, g 〉HK = 0 and 〈(r −
r (w1)).h, f 〉HK = a(r (w2)− r (w1))〈h, f 〉HK for every h ∈HK and r ∈A (Ω). It follows that g ∈
N (w2) and f ∈ N (w1, w2). In fact, ( f ⊗e1 + g ⊗e2) ∈N ⊥ if and only if

g = c1K (·, w2) and f = c2K (·, w1)+ t̄ cK (·, w2),
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for some scalars c1 and c2. Consequently,

{(
K (·, w1)

0

)
,

(
t̄K (·, w2)

K (·, w2)

)}
forms a basis for N ⊥. Clearly, the matrix representation of (M∗

zl
⊗ I )|N ⊥ with respect to this

basis is of the form
(

w̄1
l 0

0 w̄2
l

)
. Therefore, applying Lemma 5.15, we see that

[(M∗
zl
⊗ I )|N ⊥] =

w̄ 1
l

(w̄2
l −w̄1

l )t̄K1,2p
K1,1K2,2+|t |2(K1,1K2,2−|K1,2|2)

0 w̄ 2
l

 , Ki , j := K (wi , w j ),

w.r.t the orthonormal basis obtained applying the Gram-Schmidt process to the basis vectors

found above. Consequently, we have

[PN ⊥
(
Mzl ⊗ I

)
|N ⊥] =

 w 1
l 0

(w2
l −w1

l )tK2,1p
K1,1K2,2+|t |2(K1,1K2,2−|K1,2|2)

w 2
l

 . (5.4)

As before, we have proved the following.

Proposition 5.18. The module tensor product HK ⊗O (Ω) C 2
w1,w2

(t (w2 − w1)) is isomorphic to

the module C2
w1,w2

(t̃ (w2 −w1)), where t̃ is the scalar given by

t̃ = tK2,1√
K1,1K2,2 +|t |2(K1,1K2,2 −|K1,2|2)

.

Remark 5.19. Note that for any non zero t in C, we have

|t̃ | < |K2,1|√
(K1,1K2,2 −|K1,2|2)

=λK (say).

It is easy to see that the set {|t̃ | : t ∈ C, t 6= 0} is equal to the interval (0,λK ). As in the equal

eigenvalue case discussed before, if we assume that the tuple of operator MMM acting on HK

is jointly subnormal with normal spectrum in Ŝilov boundary of Ω, then it follows from the

Theorem of Sarason, Theorem 5.11, that the Hilbert module C2
w1,w2

(t (w2 − w1)), where |t | ∈
(0,λK ), admits a boundary dilation.

5.2.1 Localization of operators in the Cowen-Douglas class

Let TTT = (T1, . . . ,Tm) be a commuting m-tuple of operators in the class B1(Ω∗). We therefore

assume that TTT is jointly unitarily equivalent to the m-tuple of operators MMM∗ defined on some

Hilbert space HK consisting of holomorphic function on Ω possessing a reproducing kernel
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K (see [16]). We assume that HK is a Hilbert module over the algebra O (Ω) with the module

action given by r ·h = r (TTT )h, ‖r ·h‖ ≤ c‖r‖∞‖h‖ for some c > 0.

Let w be an arbitrary but fixed point inΩ and a = (a1, a2, . . . , am) be a vector inCm . Con-

sider the subspace Sw (a) of HK , defined by Sw (a) = ∨{K (·, w), ∂̄aK (·, w)}, where ∂̄aK (·, w)

denotes the vector (ā1∂̄1K (·, w)+·· ·+ ām ∂̄mK (·, w)) in HK . Note that Sw (a) is a joint invari-

ant subspace for the tuple MMM∗. Since (M∗
l −w̄)K (·, w) = 0 and (M∗

l −w̄)(∂̄aK (·, w)) = āl K (·, w),

the matrix representation of M∗
l |Sw (a) w.r.t this basis is of the form

[M∗
l |Sw (a)] =

(
w̄l āl

0 w̄l

)
.

Applying Lemma 5.15, we see that the matrix representation of PSw (a)Ml |Sw (a) is

[PSw (a)Ml |Sw (a)] =
(

wl 0
alp〈−KK (w̄)a,a〉 wl

)
,

w.r.t the orthonormal basis obtained from the Gram-schmidt orthonormalization of the two

basis vectors identified above. Since Sw (a) is a co-invariant subspace of HK , the Hilbert

module Sw (a) is a quotient module of HK . In fact from the matrix representation of the op-

erator tuple PSw (a)MMM |Sw (a), which induce the module action on Sw (a), it is easy to see that

the module Sw (a) is isomorphic to the module C2
w ( ap〈−KK (w̄)a,a〉 ).

In a similar fashion, for two fixed but arbitrary point w1, w2 in Ω, if we consider the

co-invariant subspace Sw1,w2 =∨{K (·, w1),K (·, w2)}, then it follows that the quotient module

Sw1,w2 of HK is isomorphic to the module C2
w1,w2

(t (w2 −w1)), where the scalar t is given by

t = K (w2, w1)√
K (w1, w1)K (w2, w2)−|K (w1, w2)|2

.

Remark 5.20. Let a = (a1, . . . , am) be a vector in Cm and w1 be an arbitrary point in Ω. Set

w2 = w1 + za, where z ∈ C has been chosen in a way such that w2 ∈ Ω. The module Sw1,w2

is isomorphic to the module C2
w1,w2

(t za), where t is defined as above. Since the module

C2
w1,w2

(t za) is isomorphic to the module C2
w1,w2

(t |z|a), without loss of generality we can as-

sume w2 = w1+|z|a. The modulesC2
w (a) can be obtained from the modulesC2

w1,w2
(t (w2−w1)

by a limiting process as shown below.

lim
z→0

t |z|a = lim
z→0

|z|K (w2, w1)a√
K (w1, w1)K (w2, w2)−|K (w1, w2)|2

= ap〈−K (w̄1)a, a〉 . (5.5)

To verify this equality, it is sufficient to show

lim
z→0

K (w1, w1)K (w2, w2)−|K (w1, w2)|2
|z|2 = (K (w1, w1))2〈−K (w̄1)a, a〉.
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Note that〈K (·, w2)−K (·, w1)

z̄
,

K (·, w2)−K (·, w1)

z̄

〉
K (w1, w1)

−
∣∣∣〈K (·, w1),

K (·, w2)−K (·, w1)

z̄

〉∣∣∣2

=
(
K (w2, w2)−K (w1, w2)−K (w2, w1)+K (w1, w1)

)
K (w1, w1)

|z|2

− |K (w2, w1)−K (w1, w1)|2
|z|2

= 1

|z|2
(
K (w2, w2)K (w1, w1)−|K (w1, w2)|2).

Since limz→0
K (·,w2)−K (·,w1)

z̄ = limz→0
K (·,(w1+za))−K (·,w1)

z̄ = ∂̄aK (·, w1), taking limit on the both

side, as z → 0 in the equation displayed above, we see that

lim
z→0

K (w1, w1)K (w2, w2)−|K (w1, w2)|2
|z|2
= ‖∂̄aK (·, w1)‖2‖K (·, w1)‖2 −|〈∂̄aK (·, w1),K (·, w1)〉|2

= (K (w1, w1))2〈−K (w̄1)a, a〉.

Assume that the m-tuple MMM is jointly subnormal with joint spectrumσ(MMM) contained in

Ω with normal spectrum contained in Ŝilov boundary. By Theorem 5.11 due to Sarason, the

quotient modules Sw (a) and the module tensor product HK ⊗O (Ω)C
2
w (a) admit a boundary

dilation. The quotient module Sw (a) is isomorphic to the module C2
w ( ap〈−KK (w̄)a,a〉 ) and the

module HK ⊗O (Ω) C
2
w (a) is isomorphic to C2

w ( ap
1−〈KK (w̄)a,a〉 ). Consequently, these modules

admit a boundary dilation.

Also, for a vector v ∈ Cm , the module C2
w (v) is contractive if and only if CΩ,w (v) ≤ 1 as

shown in Lemma 5.5. Since these contractive modules are completely contractive (cf. [4]),

they must possess a ∂O (Ω) dilation guaranteed by a theorem due to Arveson [5]. It is there-

fore natural to ask if there exists a Hilbert module HK that admits ∂O (Ω) dilation so that the

contractive module C2
w (v) is isomorphic to C2

w ( ap〈−KK (w̄)a,a〉 ) or C2
w ( ap

1−〈KK (w̄)a,a〉 ), for some

a ∈Cm . For a fixed point w in the Euclidean ball Bm , we find such a Hilbert module as long as

CΩ,w (v) < 1. However, when CΩ,w (v) = 1, the answer is not obvious.

Without loss of generality, we work with the point w = 0 in Bm since it can be moved

to any other point w using a biholomorphic automorphism of the ball. The module C2
w (v) is

contractive if and only if CΩ,w (v) = ‖v‖2 ≤ 1. Consider the case when ‖v‖2 < 1, then we will

construct explicit boundary dilation for the module C2
w (v).

The case of m = 1 is included in the discussion to follow in the next section. Therefore,

in the discussion below, we assume m > 1. First, let us consider the case of v = λe1, |λ| < 1,
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where e1 = (1,0, . . . ,0) ∈ Cm . Let HS denote the Hardy space on the Euclidean ball Bm . The

reproducing kernel of the Hardy space, namely, the Sz̈ego kernel S(z, w) is of the form

(1−〈z, w〉)−m =∑
I

aI z I w̄ I , aI = m(m +1) . . . (m +|I |−1)

I !
.

As is well known, the Hardy space admits a realization as a closed subspace in the L2(∂Ω,dµ),

where µ is the normalized surface area measure on ∂Ω. The operator tuple MMM is then jointly

subnormal. Thus ‖ f ‖2
HS

= ∫
∂Ω | f |2dµ, for every f ∈HS . Clearly, the set of monomials {z I : I ∈

Zm+ } is an orthogonal basis in HS and ‖z I‖2
dµ = aI

−1. Fix a natural number k inN and consider

the measure dµk (z) = |z1|2k dµ(z) on ∂Ω. Note that

〈z I , z J 〉dµk = 〈z I+kε1 , z J+kε1〉dµ.

Let P 2(µk ) denote the closure of all polynomials in L2(µk ). Note that in P 2(µk ), the set of

monomials {z I : I ∈Zm+ } is an orthogonal basis and

‖z I‖2
dµk

= (I +kε1)!

m(m +1) . . . (m +|I |+k −1)
.

The tuple of operators MMM is clearly jointly subnormal. Note that µk is a Reinhardt measure

on ∂Bm with support equal to ∂Bm . It follows from a result of Curto (cf. [17, Theorem 3]) on

spectral theory of Reinhardt measure that MMM∗ on P 2(µk ) belongs to B1(Ω∗). Let K denote the

kernel function of the Hilbert space P 2(µk ). A straightforward computation shows that

〈KK (0)e1,e1〉 =−m +k

k +1
.

Since m+k
k+1 → 1 as k →∞ and |λ| < 1, there exists a k ∈N such that

p
m+kp
k+1

< 1
|λ| . Depending

on this k ∈ N, consider the associated Hilbert module H (µk ) = P 2(µk ) as above. Notice that

|λ| < 1p−〈KK (0)e1,e1〉 . Following the remark 5.17, it is easy to see that the module C2
w (λe1) is

isomorphic to the module tensor product H (µk )⊗O (Ω)C
2
w (ce1) for an appropriate choice of

c ∈ C. The module C2
w (λe1) is the compression to a co-invariant subspace of H (µk )⊗C2 by

definition. Thus C2
w (λe1) admits a boundary dilation, namely, L2(∂Bm ,µk )⊗C2.

For an arbitrary point w ∈ Bm and v ∈ Cm , let b denote the unit vector of carathéodory

norm that is b = v
CBm ,w (v) . Let ϕ be a bi-holomorphic automorphism of Bm such that ϕ(w) = 0

and Dϕ(w)b = e1. Now consider the kernel function K̃ (z, w) = K (ϕ(z),ϕ(w)) on Bm where

K (z, w) is the kernel function for which 〈KK (0)e1,e1〉 =−m+k
k+1 . Note that H K̃ = { f ◦ϕ : f ∈HK }

and the map f 7→ f ◦ϕ is an isometry from HK onto H K̃ . So, we have

‖ f ◦ϕ‖2
H K̃

=
∫
∂Bm

| f (z)|2dµk (z)

=
∫
∂Bm

| f ◦ϕ(z)|2d(µk ◦ϕ(z)).
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Hence the tuple of operator MMM on H K̃ is again jointly subnormal and MMM∗ belongs to B1(Ω∗). In

fact the tuple of operator MMM on H K̃ is unitarily equivalent toϕ−1(MMM) on HK . A straightforward

computation gives

KK̃ (w) = (Dϕ(w))trKK (0)Dϕ(w).

Consequently, we have 〈KK̃ (w)b,b〉 = 〈KK (0)e1,e1〉 = −m+k
k+1 . Now repeating the same ar-

gument as before, we conclude that the module C2
w (v) must possess a boundary dilation,

namely, L2(∂Bm ,µk ◦ϕ)⊗C2. We have therefore proved the following theorem.

Theorem 5.21. Let w ∈Bm be a fixed but arbitrary point. If v ∈Cm is a vector with CBm ,w (v) < 1,

then the module C2
w (v) is contractive over O (Bm) and admits a ∂O (Bm) dilation to the module

L2(∂Bm ,µk ◦ϕw )⊗C2.

Now consider the module C2
w (v) for some v in Cm with CBm ,0(v) = ‖v‖2 = 1. It follows

from the remark 5.17 that the module tensor product obtained above does not produce a

boundary dilation. We ask if the module C2
w (v), ‖v‖ = 1, is isomorphic to the C2

w ( vp−〈KK (0)v,v〉 )

for an appropriate choice of Hilbert module HK , which is jointly subnormal. Given a vector

v,‖v‖2 = 1, the question is to find a (jointly subnormal) Hilbert module HK with the property:

〈KK (0)v, v〉 =−1.

Indeed, if Ω is a bounded planar domain and w ∈ Ω, then a version of this question

amounts to the existence of the extremal operator at w, see [26]. However, in the case of the

Euclidean Ball Bm , m > 1, we did not succeed in finding a commuting m- tuple of jointly sub-

normal operators TTT in B1(Ω∗) such that 〈KK (0)v, v〉 = −1, ‖v‖2 = 1. However, if we drop the

requirement of “joint subnoramlity”, then the adjoint of the multiplication by the co-ordinate

functions on the Drury-Arveson space (H , (1−〈z, w〉)−1) is an extremal operator since its cur-

vature at 0 is Im .

5.2.2 Extremal problem and curvature inequality

Let MMM be a commuting m-tuple of jointly subnormal operator acting on a reproducing kernel

Hilbert space HK . Let the joint spectrum σ(MMM) of MMM be equal toΩ and the normal spectrum

σ⊥(MMM) be a subset of Ω. Assume that the m-tuple of operators MMM∗ ∈ B1(Ω∗). Let µ be the

scalar spectral measure, supported onΩ, of the minimal normal extension of MMM . Thus ‖ f ‖2 =∫ | f (z)|2dµ(z), for all f ∈HK .

Let M∗M∗M∗ be an m-tuple of operators in B1(Ω∗) acting on some reproducing kernel Hilbert

space Hk . Assume that the Hilbert module HK over the algebra O (Ω) is contractive. Then for

any fixed but arbitray point w ∈Ω and any vector v ∈Cm , we have the curvature inequality

〈KM∗(w̄)v, v〉 ≤−CΩ,w (v)2.
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For a fixed v ∈Cm , we say that the Hilbert module HK is extremal at w̄ ∈Ω∗, if 〈KM∗(w̄)v, v〉 =
−CΩ,w (v)2. For the case of planar domains, the existence of such extremal operators is es-

tablished in [26]. For the multivariate case, the question of the existence of such extremal

operators is not completely resolved. We find a tractable necessary condition for a jointly

subnormal Hilbert module HK to be extremal assuming that the kernel function Kw extends,

as a holomorphic function, to a neighbourhood of Ω. We haven’t been bale to find a Hilbert

module with these properties in the multivariate case. None the less, we see many naturally

occurring examples of Jointly subnormal Hilbert modules can’t be extremal at w̄ , as long as

Kw is assumed to extend to a neigbourhood ofΩ.

Let w be an arbitrary but fixed point in Ω, and v be a vector in Cm . Let Mw (v) be

the closed convex set in HK defined by Mw (v) = { f ∈ HK : f (w) = 0,(O f (w).v) = 1}, where

(O f (w).v) = v1
∂ f
∂z1

(w)+ . . .+ vm
∂ f
∂zm

(w). Consider the following extremal problem

inf{‖ f ‖2 : f ∈Mw (v)}.

Let Ew (v) be the subspace of HK defined by

Ew (v) = { f ∈HK : f (w) = 0,(O f (w).v) = 0}.

Since f +g ∈Mw (v), whenever f ∈Mw (v) and g ∈ Ew (v), It is evident that the unique function

F which solves the extremal problem must belong to Ew (v)⊥. From the reproducing property

of K , it follows that

f (w) = 〈 f ,K (·, w)〉, (O f (w).v) = 〈 f , v̄1∂̄z1 K (·, w)+ . . .+ v̄m ∂̄zm K (·, w)〉.
Consequently, we have Ew (v)⊥ =∨{K (·, w), v̄1∂̄z1 K (·, w)+·· ·+v̄m ∂̄zm K (·, w)}. Let γ1,γ2 denote

the vectors K (·, w), v̄1∂̄z1 K (·, w)+ ·· · + v̄m ∂̄zm K (·, w) respectively. Let F = c1γ1 + c2γ2 be the

solution of the extremal problem. Since F ∈Mw (v), we have

c1γ1 + c2γ2(w) = 0 and (Oc1γ1 + c2γ2(w).v) = 1,

〈c1γ1 + c2γ2,γ1〉 = 0 and 〈c1γ1 + c2γ2,γ2〉 = 1.

Let G denotes the grammian matrix ((〈γ j ,γi 〉))2
i , j=1 and c denotes the column vector (c1,c2)tr .

we have Gc = (0,1)tr = e2. Thus c =G−1e2. Consequently, we have that

‖F‖2 = ‖c1γ1 + c2γ2‖2

= 〈Gc,c〉
= 〈G−1e2,e2〉

= ‖γ1‖2

‖γ1‖2‖γ2‖2 −|〈γ1,γ2〉|2
= (K (w, w)〈−KK (w̄)v, v〉)−1.
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Hence we have

inf{‖ f ‖2 : f ∈Mw (v)} = (K (w, w)〈−KK (w̄)v, v〉)−1.

Recall that the Carathéodory norm CΩ,w (v) of a vector v in Cm is obtained by solving the

extremal problem

sup{|(O f · v)| : f ∈A (Ω),‖ f ‖∞ ≤ 1, f (w) = 0}.

The existence of a holomorphic function Fw,v (z) onΩ such that Fw,v (w) = 0, ‖Fw,v‖∞ ≤ 1 and

|(OFw,v .v)| =CΩ,w (v) follows from the Montel’s theorem. Consider the function g defined by

g (z) := Fw,v (z)K (z, w)

K (w, w)CΩ,w (v)
.

Since g is in Mw (v), we have the inequality

1

K (w, w)〈−KK (w̄)v, v〉 ≤ ‖g‖2

= 1

K (w, w)2(CΩ,w (v))2

∫
∂Ω

|Fw,v (z)|2|K (z, w)|2dµ(z)

≤ 1

K (w, w)2(CΩ,w (v))2

∫
∂Ω

|K (z, w)|2dµ(z),

= 1

K (w, w)(CΩ,w (v))2
,

where the last but one inequality follows from the inequality ‖Fw,v‖∞ ≤ 1. Hence we have

(CΩ,w (v))2 ≤ 〈−KK (w̄)v, v〉, which is the desired curvature inequality. So, in case of equality,

g must solve the extremal problem and µ must satisfy µ(X c ∩Ω) = 0, where X is given by

X = {z ∈Ω : Kw (z) = 0}∪ {z ∈Ω : |Fw,v (z)| = 1}.

This provides an algorithm to construct examples of contractive modules for which the cur-

vature inequality is strict.

5.3 Bundle shifts of rank 1 and localization: Planar domain

Let Ω be a finitely connected bounded planar domain whose boundary consists of n +1 an-

alytic jordan curves and α be a character of the fundamental group π1(Ω). Abrahamse and

Douglas in [2] have shown that the adjoint of any multiplicity one bundle shift of index α

over a planar domain Ω is in the Cowen-Douglas class B1(Ω∗). Consequently, any such bun-

dle shift can be realized as a multiplication, by the coordinate function, operator M on the
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Hilbert space HKα , where K (α) is a non-negative definite kernel defined onΩ×Ω determined

by the characterα. The bundle shifts M are pure subnormal operators of multiplicity one, the

spectrum σ(M) =Ω and the normal spectrum σ⊥(M) = ∂Ω. (cf. [2]). The operator M , being

subnormal, admits Ω as a spectral set. Consequently HKα is a contractive Hilbert module

over the function algebra O (Ω) induced by the multiplication operator M .

In what follows describe the localization of the operator M∗ in the Cowen-Douglas class

B1(Ω∗). This could be easily obtained from the multi-variable case discussed in the previous

section. However, it is repeated here for clarity. Let w be a fixed but arbitrary point in Ω. Let

S α
w ⊆HKα be the co-invariant subspace of M defined by

S α
w := { f ∈HKα | f (w) = 0, f ′(w) = 0} = [∨ {K α

w , ∂̄K α
w }

]⊥. (5.6)

The module action for the quotient module S α
w is induced by the operator (PS α

w
M)|S α

w
and

the matrix of the operator (PS α
w

M)|S α
w

w.r.t an orthonormal basis is of the form

[(PS α
w

M)|S α
w

] =
(

w 0
1p−KKα (w̄)

w

)
. (5.7)

So, the Hilbert module S α
w is isomorphic to the module C2

w ( 1p−KKα (w̄)
). Since the Hilbert

module HKα over O (Ω) induced by the operator M is contractive, the quotient module S α
w

is also contractive. Using lemma 5.5 we have CΩ,w ( 1p−KKα (w̄)
) ≤ 1. In the case of a palnar do-

main Ω, Carathéodory norm, CΩ,w (λ) is related to the Sz̈ego kernel SΩ(w, w) for the domain

Ω in the following way (cf. [7, Theorem 13.1])

CΩ,w (λ) = |λ|sup{| f ′(w)| : f ∈O (Ω), f (w) = 0,‖ f ‖∞ ≤ 1} = |λ|2πSΩ(w, w).

Consequently, we obtain the following inequality for the curvature of the adjoint M∗

KKα(ξ̄) ≤−4π2(SΩ(ξ,ξ))2, ξ ∈Ω.

It is useful to restate the curvature inequality in the equivalent form:

∂2

∂z∂z̄
logK α(z, z)|z=ξ ≥ 4π2(SΩ(ξ,ξ))2, ξ ∈Ω.

For a fixed point w inΩ, Misra (See [26]) has shown the existence of a bundle shift of index β

(depending upon w) such that ∂2

∂z∂z̄ logK β(z, z)|z=w = 4π2(SΩ(w, w))2. Consequently it follows

that

inf
α

∂2

∂z∂z̄
logK α(z, z)|z=w = 4π2(SΩ(w, w))2 =−sup

α
KKα(w̄).
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Let’s consider the interval IΩ(w) ⊆R+ defined by

IΩ(w) := [
1p

JΩ(w)
,

1

2πSΩ(w, w)
], (5.8)

where JΩ(w) is given by JΩ(w) = supα
∂2

∂z∂z̄ logK α(z, z)|z=w = − infαKKα(w̄). By definition,

(−KKα(w̄))−
1
2 ∈IΩ(w). For a fixed w inΩ, consider the functionφ :Tn 7→R defined byφ(α) =

KKα(w̄). We show that φ is a continuous function. Consequently, the set {(−KKα(w̄))−
1
2 :

α ∈ Tn} is equal to the interval IΩ(w). (Recall that the characters α are in one to one corre-

spondence with elements of the torusTn equivalently also in one to one correspondence with

elements of [0,1)n .)

Lemma 5.22. For a fixed w inΩ, the function φ :Tn →R defined by φ(α) =KKα(w̄) is contin-

uous.

Proof. We have that

KKα(w̄) =− ∂2

∂z∂z̄
logK α(z, z)|z=w =−‖K α

w‖2‖∂̄K α
w‖2 −|〈K α

w , ∂̄K α
w 〉|2

(K α(w, w))2
, w ∈Ω.

For a fixed w inΩ, Widom in [44], has shown that the function α→ K α
w is continuous. Hence

to prove that φ is continuous, it is sufficient to show that for each fixed w in Ω the function

α→ ∂̄K α
w is continuous. The technique of the proof below is not very different from the one

given in [20, Ch.5, Proposition 4.7] to show that the function α→ K α
w is continuous. Thus to

complete the proof of the continuity of the map α→ K α
w , we recall the proof from [20, Ch.5,

Proposition 4.7] and modify it slightly wherever necessary.

Let fn(z) = ∂̄K αn
w (z) for z ∈Ω and assume αn →α in Tn . We show that { fn} is uniformly

norm bounded in L2(∂Ω,dω) and consequently, { fn} is uniformly bounded on compact subset

of Ω. If E is a compact set in Ω, then there is a constant C depending only on E and Ω such

that

sup
ξ∈E

|r (ξ)| ≤C‖r‖, r ∈ H 2
α(Ω). (5.9)

Now using Cauchy integral formula, we find a constant C1 depending only on E and Ω such

that

sup
ξ∈E

|r ′(ξ)| ≤C1‖r‖, r ∈ H 2
α(Ω), α ∈Tn . (5.10)

So for the compact set E containing w inΩ, we have

‖ fn‖ = sup
‖r‖≤1

|〈 fn ,r 〉| = sup
‖r‖≤1

|r ′(w)| ≤C1.
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Therefore, we may assume without loss of generality that the sequence of function { fn} con-

verges weakly in L2(∂Ω,dω) to some function h. It also follows from (5.10) that { fn} is uni-

formly bounded on compact sets in Ω. Consequently we may assume fn → f uniformly on

compact sets inΩ for some f in H 2
α(Ω). There exist of a δ> 0 and a sequence gn of multiplica-

tive functions satisfying

gn ∈ H∞
α−αn

(Ω), δ≤ |gn(z)| ≤ 1

δ
, z ∈Ω,

with the property that gn → 1 not only pointwise in Ω but also in L2(∂Ω,dω), see [20, Ch.5,

Proposition 4.7]. It also follows from (5.10) that (gn)′ → 0 pointwise. Thus for z ∈Ω, we have∫
∂Ω

hK α
z dω= lim

∫
∂Ω

fnK α
z dω

= lim
∫
∂Ω

fn gnK α
z dω

= lim fn(z)gn(z) = f (z).

A similar argument shows that h lies in H 2
α(Ω) and thus f = h on ∂Ω. Now we show that f is

equal to ∂̄K α
w . Let g ∈ H∞

α (Ω) and note that∫
∂Ω

g f̄ dω= lim
∫
∂Ω

g f̄ndω

= lim
∫
∂Ω

g
1

gn
f̄ndω

= lim(
g

gn
)′(w)

= g ′(w).

Since H∞
α (Ω) is dense in H 2

α(Ω) we get that f = ∂̄K α
w .

Let w1, w2 be two fixed but arbitrary point in Ω. Consider the subspace S α
w1,w2

of HKα

defined by

S α
w1,w2

:= { f ∈HKα | f (w1) = 0, f (w2) = 0} = [∨ {K α
w1

, ∂̄K α
w2

}
]⊥. (5.11)

Module action of the quotient module S α
w1,w2

is induced by the operator (PS α
w1,w2

M)|S α
w1,w2

and the matrix of the operator (PS α
w1,w2

M)|S α
w1,w2

w.r.t an orthonormal basis is of the form:

[(PS α
w1,w2

M)|S α
w1,w2

] =
(

w1 0

(w2 −w1)λw1,w2 (α) w2

)
, (5.12)
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where λw1,w2 (α) = Kα(w2,w1)p
Kα(w1,w1)Kα(w2,w2)−|Kα(w1,w2)|2

. So, the quotient module S α
w1,w2

is isomor-

phic to the module C2
w1,w2

((w2 −w1)λw1,w2 (α)). Since the Hilbert module HKα over O (Ω) in-

duced by the operator M is contractive, the quotient module S α
w1,w2

is also contractive. Using

lemma 5.7 we obtain |λw1,w2 (α)|2 ≤ 1−(mΩ(w1,w2))2

(mΩ(w1,w2))2 . Consequently, we have

sup
α∈Tn

|λw1,w2 (α)| ≤
√

1− (mΩ(w1, w2))2

mΩ(w1, w2)
= tΩ(w1, w2) (say).

It has been shown that there exist a multiplicty one bundle shift of index α for which we have

|λw1,w2 (α)| = tΩ(w1, w2) (cf. [8, Pg. 1188]). Let pΩ(w1, w2) := infα |λw1,w2 (α)| and consider the

interval

IΩ(w1, w2) := [|w1 −w2|pΩ(w1, w2), |w1 −w2|tΩ(w1, w2)
]⊆R+. (5.13)

By definition |(w1 −w2)λw1,w2 (α)| ∈IΩ(w1, w2). For a fixed w ∈Ω, the function ψ :α→ K α
w is

continuous. It therefore follows that the function λw1,w2 : α→ λw1,w2 (α) is a continuous real

valued function on Tn . Hence the set {λw1,w2 (α) |α ∈Tn} is equal to the interval IΩ(w1, w2).

5.4 Constructing dilation for planar algebras

LetΩ be a finitely connected bounded domain in the complex plane Cwhose boundary con-

sists of n+1 analytic Jordan curves. Let w, w1, w2 are fixed but arbitrary points inΩ and λ be a

non zero number inC. Consider the Hilbert modulesC2
w (λ) andC2

w1,w2
((w2−w1)λ) over O (Ω),

as discussed in example 5.4 and 5.6. Assume that the modules C2
w (λ) and C2

w1,w2
((w2 −w1)λ)

are contarctive. Agler has shown that such contractive modules are completely contractive

(cf. [4]). Consequently, following Arveson’s deep result (cf. [5]), this modules admits a ∂Ω dila-

tion. An explicit dilation for such modules is given in [8], see also [26]. We discuss below some

finer details of this construction.

Equal eigenvalue case: First we consider the case of C2
w (λ). Assume that the Hilbert

module C2
w (λ) is contractive over O (Ω). Using Lemma 5.5 we have CΩ,w (λ) ≤ 1. In the case of

a planar domain Ω, Carathéodory norm CΩ,w (λ), as discussed in previous section, is related

to the Sz̈ego kernel SΩ(w, w) for the domainΩ in the following way (cf. [7, Theorem 13.1])

CΩ,w (λ) = |λ|sup{| f ′(w)| : f ∈O (Ω), f (w) = 0,‖ f ‖∞ ≤ 1} = |λ|2πSΩ(w, w).

Consequently, we have |λ| ≤ 1
2πSΩ(w,w) . Now two cases arise, which we describe below.

Case 1: |λ| ∈ IΩ(w), see (5.8) for the definition of the interval IΩ(w). From Lemma

(5.22), the existence of a character α such that the module C2
w (λ) is isomorphic to the mod-

ule C2
w ( 1p

(−KKα (w̄))
) follows. Equivalently, the module C2

w (λ) is isomorphic to the quotient

module S α
w of the Hilbert module HKα defined in (5.6).
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Case 2: 0 < |λ| ≤ 1
2πSΩ(w,w) but |λ| ∉ IΩ(w). Now consider the module tensor product

HKα ⊗O (Ω)C
2
w (a). Following (5.3), we find that the module HKα ⊗O (Ω)C

2
w (a) is isomorphic to

the module C2
w ( ap

1−|a|2KKα (w̄)
). Notice that

0 ≤ |a|√
1−|a|2KKα(w̄)

< 1p−KKα(w̄)
.

In fact, given any character α in Tn and any λ, satisfying 0 < |λ| < 1p
(−KKα (w̄))

, if we choose

a = λp
1+|λ|2KKα (w̄)

, then clearly we have ap
1−|a|2KKα (w̄)

= λ. Hence, given any λ, satisfying

0 < |λ| < 1p
JΩ(w)

and any character α, we can find a scalar a for which the module C2
w (λ) is

isomorphic to the module C2
w ( ap

1−|a|2KKα (w̄)
). Equivalently, the module C2

w (λ) is isomorphic

to the module tensor product HKα ⊗O (Ω)C
2
w (a).

Distinct eigenvalue case: Now consider the Hilbert moduleC2
w1,w2

((w2−w1)λ) over the

algebra O (Ω) and assume that it is a contractive module. Using lemma 5.7, we have |λ| ≤p
1−(mΩ(w1,w2))2

mΩ(w1,w2) = tΩ(w1, w2). Again, we have two distinct possibilities.

Case 1: |λ| ∈IΩ(w1, w2), see (5.13) for the definition of IΩ(w1, w2). In this case, we have

the existence of a character α such that |λ| = |λw1,w2 (α)|. So, the module C2
w1,w2

((w2 −w1)λ)

is isomorphic to the module C2
w1,w2

((w2 − w1)λw1,w2 (α)). Equivalently, the Hilbert module

C2
w1,w2

((w2 −w1)λ) is isomorphic to the quotient module S α
w1,w2

of the Hilbert module HKα

defined in (5.11).

Case 2: When |λ| ≤ tΩ(w1, w2) but |λ| ∉IΩ(w1, w2). From (5.4), we find that the module

tensor product HKα⊗O (Ω)C
2
w1,w2

(a(w2 −w1)) is equal to C2
w1,w2

(â(w2 −w1)), where â is given

by

â =
aK α

2,1√
K α

1,1K α
2,2 +|a|2(K α

1,1K α
2,2 −|K α

1,2|2)
.

Notice that |â| < |λw1,w2 (α)|. In fact, given any characterα inTn and any λ, satisfying 0 < |λ| <
λw1,w2 (α)|, if we choose

a =
λ
√

K α
1,1K α

2,2√
|K α

2,1|2 −|λ|2(K α
1,1K α

2,2 −|K α
1,2|2)

,

then clearly we have |â| = |λ|. Hence, given any λ, satisfying 0 < |λ| < pΩ(w1, w2) and any

character α, we can find a scalar a for which the module C2
w1,w2

((w2 − w1)λ) is isomorphic

to the module C2
w1,w2

((w2 − w1)â). Equivalently, the module C2
w1,w2

(λ) is isomorphic to the

module tensor product HKα ⊗O (Ω)C
2
w1,w2

(a).
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5.4.1 Minimality and Non-uniqueness

Let M be a Hilbert module over O (Ω). Assume that M admits a boundary dilation. So, there

exist a contractive Hilbert module H over C (∂Ω) such that PMρH ( f )|M = ρM ( f ) for all

f ∈ O (Ω), where ρM and ρK are the homomorphism associated with the module M and H

respectively. Then by Sarason’s theorem (see Theorem 5.11), there are submodules H0 and

H1 of the module H over the algebra O (Ω) such that M is the quotient of H0 by H1. Thus

we have the following exact sequence

0 −→H1
θ−→H0

ψ−→M −→ 0,

where θ and ψ are partial isometric module maps. This is also called as Ŝilov resolution for

the module M . Without loss of generality, we may assume that H is the unique minimal

extension of H0 over the algebra C (∂Ω). Then the dilation of M , or equivalently, the Ŝilov

resolution for M is said to be minimal if the closure of {ρK ( f )(M ) : f ∈C (∂Ω)} is equal to H ,

that is, H does not have any proper submodule over C (∂Ω) containing M .

The module S α
w described in (5.6) admits the resolution

0 −→H1
θ−→H0

ψ−→S α
w −→ 0,

where H1 = S α
w

⊥, H0 = H 2
α and the maps θ,ψ are the inclusion and the projection maps

respectively.

We note that
∫
∂Ω log | f |d s < ∞, for all f ∈ H 2

α, (see [20, Ch.4,Proposition 6.7]). There-

fore L2
α has no proper reducing subspace containing a non trivial subspace of H 2

α since every

proper reducing subspace of L2
α must vanish on a set of positive measure. It now follows that

the resolution of S α
w is minimal.

Let M be a contractive module over O (Ω). Suppose 0 −→ Bi −→ P i −→ M −→ 0 are

two Ŝilov resolution for the module M , i = 1,2. We say that these resolutions are isomorphic

if there exist module isomorphism ϕ : B1 7→B2 and ϑ : P1 7→P2 such that the diagram

0 −−−−→ B1 −−−−→ P1 −−−−→ M −−−−→ 0y yϕ yϑ yid

y
0 −−−−→ B2 −−−−→ P2 −−−−→ M −−−−→ 0

commutes.

In the case of Ω = D, It is well known that any two minimal Ŝilov resolution for a con-

tractive module M over O (D) are isomorphic (cf. [19, Theorem 3.15]). However this fails in the

case of a finitely connected domain with connectivity greater than 1. (cf. [19, Example 3.9]).

We provide another class of example which illustrate this fact.
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For a fixed w in Ω, we have proved that the function φ : Tn → R defined by φ(α) =
KKα(w̄) is continuous (See Lemma 5.22). It follows that φ is never injective. (Indeed, if we

assume to the contrary that such a continuous map exists, then one must conclude that the

n torus Tn is homeomorphic to a compact interval leading to a contradiction.) Hence there

exists two distinct character α and β so that

KKα(w̄) =KK β(w̄).

Consequently the quotient modules S α
w and S

β
w are isomorphic but the Ŝilov resolution for

the modules S α
w and S

β
w are not isomorphic.

In the language of Ball, (cf. [6]) this gives an example of two weakly equivalent but

strongly inequivalent model for C00 completely contractive unital representation over the

function algebra Rat(Ω).
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